benchmark_tilelang_block_sparse_fmha.py 8.93 KB
Newer Older
root's avatar
init  
root committed
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
# ruff: noqa
import math
import torch

import tilelang
from tilelang import language as T
from tilelang.profiler import do_bench


def is_hip():
    return False


def get_sparse_attn_mask_from_topk(x, topk, use_dense_for_last_block=False):
    bsz, num_head, downsample_len, _ = x.shape
    # N_CTX = downsample_len * BLOCK
    sparse_index = torch.topk(x, topk, dim=-1).indices
    dense_mask = torch.full([bsz, num_head, downsample_len, downsample_len],
                            False,
                            dtype=torch.bool,
                            device=x.device)
    dense_mask.scatter_(-1, sparse_index, True)
    if use_dense_for_last_block:
        dense_mask[:, :, -2:, :] = True
    dense_mask.tril_()
    return dense_mask


def get_sparse_attn_mask_from_threshold(x, threshold, use_dense_for_last_block=False):
    dense_mask = x > threshold
    if use_dense_for_last_block:
        dense_mask[:, :, -2:, :] = True
    dense_mask.tril_()
    return dense_mask


def blocksparse_flashattn(batch, heads, seq_len, dim, downsample_len, is_causal):
    block_M = 64
    block_N = 64
    num_stages = 2
    threads = 128
    scale = (1.0 / dim)**0.5 * 1.44269504  # log2(e)
    shape = [batch, heads, seq_len, dim]
    block_mask_shape = [batch, heads, downsample_len, downsample_len]

    dtype = "float16"
    accum_dtype = "float"
    block_mask_dtype = "bool"

    def kernel_func(block_M, block_N, num_stages, threads):

        @T.macro
        def MMA0(
            K: T.Tensor(shape, dtype),
            Q_shared: T.SharedBuffer([block_M, dim], dtype),
            K_shared: T.SharedBuffer([block_N, dim], dtype),
            acc_s: T.FragmentBuffer([block_M, block_N], accum_dtype),
            k: T.int32,
            bx: T.int32,
            by: T.int32,
            bz: T.int32,
        ):
            T.copy(K[bz, by, k * block_N:(k + 1) * block_N, :], K_shared)
            if is_causal:
                for i, j in T.Parallel(block_M, block_N):
                    acc_s[i, j] = T.if_then_else(bx * block_M + i >= k * block_N + j, 0,
                                                 -T.infinity(acc_s.dtype))
            else:
                T.clear(acc_s)
            T.gemm(Q_shared, K_shared, acc_s, transpose_B=True, policy=T.GemmWarpPolicy.FullRow)

        @T.macro
        def MMA1(
            V: T.Tensor(shape, dtype),
            V_shared: T.SharedBuffer([block_M, dim], dtype),
            acc_s_cast: T.FragmentBuffer([block_M, block_N], dtype),
            acc_o: T.FragmentBuffer([block_M, dim], accum_dtype),
            k: T.int32,
            by: T.int32,
            bz: T.int32,
        ):
            T.copy(V[bz, by, k * block_N:(k + 1) * block_N, :], V_shared)
            T.gemm(acc_s_cast, V_shared, acc_o, policy=T.GemmWarpPolicy.FullRow)

        @T.macro
        def Softmax(
                acc_s: T.FragmentBuffer([block_M, block_N], accum_dtype),
                acc_s_cast: T.FragmentBuffer([block_M, block_N], dtype),
                scores_max: T.FragmentBuffer([block_M], accum_dtype),
                scores_max_prev: T.FragmentBuffer([block_M], accum_dtype),
                scores_scale: T.FragmentBuffer([block_M], accum_dtype),
                scores_sum: T.FragmentBuffer([block_M], accum_dtype),
                logsum: T.FragmentBuffer([block_M], accum_dtype),
        ):
            T.copy(scores_max, scores_max_prev)
            T.fill(scores_max, -T.infinity(accum_dtype))
            T.reduce_max(acc_s, scores_max, dim=1, clear=False)
            # To do causal softmax, we need to set the scores_max to 0 if it is -inf
            # This process is called Check_inf in FlashAttention3 code, and it only need to be done
            # in the first ceil_div(kBlockM, kBlockN) steps.
            # for i in T.Parallel(block_M):
            #     scores_max[i] = T.if_then_else(scores_max[i] == -T.infinity(accum_dtype), 0, scores_max[i])
            for i in T.Parallel(block_M):
                scores_scale[i] = T.exp2(scores_max_prev[i] * scale - scores_max[i] * scale)
            for i, j in T.Parallel(block_M, block_N):
                # Instead of computing exp(x - max), we compute exp2(x * log_2(e) -
                # max * log_2(e)) This allows the compiler to use the ffma
                # instruction instead of fadd and fmul separately.
                acc_s[i, j] = T.exp2(acc_s[i, j] * scale - scores_max[i] * scale)
            T.reduce_sum(acc_s, scores_sum, dim=1)
            for i in T.Parallel(block_M):
                logsum[i] = logsum[i] * scores_scale[i] + scores_sum[i]
            T.copy(acc_s, acc_s_cast)

        @T.macro
        def Rescale(
                acc_o: T.FragmentBuffer([block_M, dim], accum_dtype),
                scores_scale: T.FragmentBuffer([block_M], accum_dtype),
        ):
            for i, j in T.Parallel(block_M, dim):
                acc_o[i, j] *= scores_scale[i]

        @T.prim_func
        def main(
                Q: T.Tensor(shape, dtype),
                K: T.Tensor(shape, dtype),
                V: T.Tensor(shape, dtype),
                BlockSparseMask: T.Tensor(block_mask_shape, block_mask_dtype),
                Output: T.Tensor(shape, dtype),
        ):
            with T.Kernel(
                    T.ceildiv(seq_len, block_M), heads, batch, threads=threads) as (bx, by, bz):
                Q_shared = T.alloc_shared([block_M, dim], dtype)
                K_shared = T.alloc_shared([block_N, dim], dtype)
                V_shared = T.alloc_shared([block_N, dim], dtype)
                O_shared = T.alloc_shared([block_M, dim], dtype)
                acc_s = T.alloc_fragment([block_M, block_N], accum_dtype)
                acc_s_cast = T.alloc_fragment([block_M, block_N], dtype)
                acc_o = T.alloc_fragment([block_M, dim], accum_dtype)
                scores_max = T.alloc_fragment([block_M], accum_dtype)
                scores_max_prev = T.alloc_fragment([block_M], accum_dtype)
                scores_scale = T.alloc_fragment([block_M], accum_dtype)
                scores_sum = T.alloc_fragment([block_M], accum_dtype)
                logsum = T.alloc_fragment([block_M], accum_dtype)
                block_mask = T.alloc_local([downsample_len], block_mask_dtype)

                T.copy(Q[bz, by, bx * block_M:(bx + 1) * block_M, :], Q_shared)
                T.fill(acc_o, 0)
                T.fill(logsum, 0)
                T.fill(scores_max, -T.infinity(accum_dtype))

                for vj in T.serial(downsample_len):
                    block_mask[vj] = BlockSparseMask[bz, by, bx, vj]

                loop_range = (
                    T.min(T.ceildiv(seq_len, block_N), T.ceildiv(
                        (bx + 1) * block_M, block_N)) if is_causal else T.ceildiv(seq_len, block_N))

                for k in T.Pipelined(loop_range, num_stages=num_stages):
                    if block_mask[k]:
                        MMA0(K, Q_shared, K_shared, acc_s, k, bx, by, bz)
                        Softmax(acc_s, acc_s_cast, scores_max, scores_max_prev, scores_scale,
                                scores_sum, logsum)
                        Rescale(acc_o, scores_scale)
                        MMA1(V, V_shared, acc_s_cast, acc_o, k, by, bz)
                for i, j in T.Parallel(block_M, dim):
                    acc_o[i, j] /= logsum[i]
                T.copy(acc_o, O_shared)
                T.copy(O_shared, Output[bz, by, bx * block_M:(bx + 1) * block_M, :])

        return main

    return kernel_func(block_M, block_N, num_stages, threads)


def benchmark_topk_sparse_attention():
    from benchmark_configs import configs
    torch.manual_seed(0)

    # Config
    for BATCH, N_HEADS, SEQ_LEN, D_HEAD, TOPK, BLOCK in configs:

        # Create inputs
        q = torch.randn(BATCH, N_HEADS, SEQ_LEN, D_HEAD, device='cuda', dtype=torch.float16)
        k = torch.randn(BATCH, N_HEADS, SEQ_LEN, D_HEAD, device='cuda', dtype=torch.float16)
        v = torch.randn(BATCH, N_HEADS, SEQ_LEN, D_HEAD, device='cuda', dtype=torch.float16)

        # Create sparse mask (downsampled to block level)
        downsample_factor = BLOCK
        downsample_len = math.ceil(SEQ_LEN / downsample_factor)
        x_ds = torch.randn([BATCH, N_HEADS, downsample_len, downsample_len],
                           device='cuda',
                           dtype=torch.bfloat16)
        x_ds[:, :, :, 0] = 100
        block_mask = get_sparse_attn_mask_from_topk(x_ds, topk=TOPK)
        program = blocksparse_flashattn(
            BATCH, N_HEADS, SEQ_LEN, D_HEAD, downsample_len, is_causal=True)
        kernel = tilelang.compile(program, out_idx=4)

        def benchmark_fn():
            # Compute reference
            # Expand block mask to full attention matrix
            kernel(q, k, v, block_mask)

        ref_latency = do_bench(
            benchmark_fn,
            warmup=10,
            rep=100,
        )
        print(
            f"BATCH: {BATCH}, N_HEADS: {N_HEADS}, SEQ_LEN: {SEQ_LEN}, D_HEAD: {D_HEAD}, TOPK: {TOPK}, BLOCK: {BLOCK}, ref_latency: {ref_latency}"
        )


if __name__ == "__main__":
    benchmark_topk_sparse_attention()