"git@developer.sourcefind.cn:gaoqiong/migraphx.git" did not exist on "53870e3b33e2a316b53f568456da305ca0def8e0"
quantization.py 7.29 KB
Newer Older
jixx's avatar
jixx committed
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
import json
import os
from dataclasses import dataclass
from typing import Optional

from huggingface_hub import hf_hub_download
from text_generation_server.layers.marlin.gptq import can_use_gptq_marlin
from text_generation_server.utils.weights import (
    DefaultWeightsLoader,
    WeightsLoader,
)


# TODO: Split this config to have a single config type per quant method
@dataclass
class _QuantizerConfig:
    bits: int
    checkpoint_format: Optional[str]
    desc_act: bool
    groupsize: int
    quant_method: str
    sym: bool


@dataclass
class _FP8QuantizerConfig:
    activation_scale_ub: float


# We should probably do this with Pytantic JSON deserialization,
# but for now we'll stay close to the old _set_gptq_params.
def _get_quantizer_config(model_id, revision):
    bits = 4
    groupsize = -1
    quant_method = "gptq"
    checkpoint_format = None
    sym = False
    desc_act = False

    filename = "config.json"
    try:
        if os.path.exists(os.path.join(model_id, filename)):
            filename = os.path.join(model_id, filename)
        else:
            filename = hf_hub_download(model_id, filename=filename, revision=revision)
        with open(filename, "r") as f:
            data = json.load(f)

        # FP8 config
        if data["quantization_config"]["quant_method"] == "fbgemm_fp8":
            return _FP8QuantizerConfig(
                activation_scale_ub=data["quantization_config"]["activation_scale_ub"]
            )

        if "zero_point" in data["quantization_config"]:
            sym = not data["quantization_config"]["zero_point"]
            quant_method = "awq"
        elif "sym" in data["quantization_config"]:
            sym = data["quantization_config"]["sym"]

        bits = data["quantization_config"]["bits"]
        groupsize = data["quantization_config"]["group_size"]
        # Order is important here, desc_act is missing on some real models
        quant_method = data["quantization_config"]["quant_method"]
        checkpoint_format = data["quantization_config"].get("checkpoint_format")
        desc_act = data["quantization_config"]["desc_act"]
    except Exception:
        filename = "quantize_config.json"
        try:
            if os.path.exists(os.path.join(model_id, filename)):
                filename = os.path.join(model_id, filename)
            else:
                filename = hf_hub_download(
                    model_id, filename=filename, revision=revision
                )
            with open(filename, "r") as f:
                data = json.load(f)
            bits = data["bits"]
            groupsize = data["group_size"]

            if "zero_point" in data:
                sym = not data["zero_point"]
                quant_method = "awq"
            elif "sym" in data:
                sym = data["sym"]

            desc_act = data["desc_act"]
            if "version" in data and data["version"] == "GEMM":
                quant_method = "awq"
        except Exception:
            filename = "quant_config.json"
            try:
                if os.path.exists(os.path.join(model_id, filename)):
                    filename = os.path.join(model_id, filename)
                else:
                    filename = hf_hub_download(
                        model_id, filename=filename, revision=revision
                    )
                with open(filename, "r") as f:
                    data = json.load(f)
                bits = data["w_bit"]
                groupsize = data["q_group_size"]
                desc_act = data["desc_act"]
                if "version" in data and data["version"] == "GEMM":
                    quant_method = "awq"
            except Exception:
                pass

    return _QuantizerConfig(
        bits=bits,
        groupsize=groupsize,
        quant_method=quant_method,
        checkpoint_format=checkpoint_format,
        sym=sym,
        desc_act=desc_act,
    )


def get_loader(
    quantize: Optional[str], model_id: str, revision: Optional[str]
) -> WeightsLoader:
    quantizer_config = _get_quantizer_config(model_id, revision)
    if quantize in {"awq", "gptq"}:
        from text_generation_server.layers.gptq import GPTQWeightsLoader

        # TODO: improve check once we have one config type per quantize value
        if not isinstance(quantizer_config, _QuantizerConfig):
            raise ValueError(
                f"Quantize is set to `{quantize}` but received a `{quantizer_config.__class__.__name__}` config."
            )

        if can_use_gptq_marlin(
            bits=quantizer_config.bits,
            groupsize=quantizer_config.groupsize,
            quant_method=quantizer_config.quant_method,
            quantize=quantize,
            sym=quantizer_config.sym,
        ):
            from text_generation_server.layers.marlin import GPTQMarlinWeightsLoader

            return GPTQMarlinWeightsLoader(
                bits=quantizer_config.bits,
                desc_act=quantizer_config.desc_act,
                groupsize=quantizer_config.groupsize,
                quant_method=quantizer_config.quant_method,
                quantize=quantize,
                sym=quantizer_config.sym,
            )
        else:
            return GPTQWeightsLoader(
                bits=quantizer_config.bits,
                desc_act=quantizer_config.desc_act,
                groupsize=quantizer_config.groupsize,
                quant_method=quantizer_config.quant_method,
                quantize=quantize,
                sym=quantizer_config.sym,
            )
    elif quantize == "bitsandbytes":
        from text_generation_server.layers.bnb import BNBWeight

        return DefaultWeightsLoader(BNBWeight)
    elif quantize == "bitsandbytes-fp4":
        from text_generation_server.layers.bnb import BNBFP4Weight

        return DefaultWeightsLoader(BNBFP4Weight)
    elif quantize == "bitsandbytes-nf4":
        from text_generation_server.layers.bnb import BNBNF4Weight

        return DefaultWeightsLoader(BNBNF4Weight)
    elif quantize == "eetq":
        from text_generation_server.layers.eetq import EETQWeight

        return DefaultWeightsLoader(EETQWeight)
    elif quantize == "exl2":
        from text_generation_server.layers.exl2 import Exl2WeightsLoader

        return Exl2WeightsLoader()
    elif quantize == "marlin":
        from text_generation_server.layers.marlin import MarlinWeightsLoader

        # TODO: improve check once we have one config type per quantize value
        if not isinstance(quantizer_config, _QuantizerConfig):
            raise ValueError(
                f"Quantize is set to `{quantize}` but received a `{quantizer_config.__class__.__name__}` config."
            )

        return MarlinWeightsLoader(
            bits=quantizer_config.bits,
            is_marlin_24=quantizer_config.checkpoint_format == "marlin_24",
        )
    elif quantize == "fp8" or quantize is None:
        from text_generation_server.layers.fp8 import HybridFP8UnquantLoader

        # Since the default for the quantize config is _QuantizerConfig,
        # we need to add this check to not get an attribute error
        activation_scale_ub = None
        if isinstance(quantizer_config, _FP8QuantizerConfig):
            activation_scale_ub = quantizer_config.activation_scale_ub

        return HybridFP8UnquantLoader(activation_scale_ub, to_fp8=quantize == "fp8")
    else:
        raise ValueError(f"Unknown quantization method: {quantize}")