vlm_causal_lm.py 17.3 KB
Newer Older
jixx's avatar
init  
jixx committed
1
2
3
4
5
6
7
8
9
10
import torch
from PIL import Image
from io import BytesIO

from opentelemetry import trace
from typing import Iterable, Optional, Tuple, List, Type, Dict

from transformers import PreTrainedTokenizerBase
from transformers.image_processing_utils import select_best_resolution
from text_generation_server.pb import generate_pb2
jixx's avatar
jixx committed
11
12
13
from text_generation_server.models.flash_causal_lm import (
    FlashCausalLMBatch,
    FlashCausalLM,
jixx's avatar
init  
jixx committed
14
)
jixx's avatar
jixx committed
15
16
17
18
19
from text_generation_server.models.globals import PREFIX_CACHING, ATTENTION
from text_generation_server.utils.log import log_master
from transformers import AutoProcessor
from text_generation_server.layers.attention import Seqlen
from text_generation_server.models.metadata_kernels import block_tables_to_ragged
jixx's avatar
init  
jixx committed
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61

tracer = trace.get_tracer(__name__)

IDEFICS2_FAKE_TOKEN = "<fake_token_around_image>"
IDEFICS2_IMAGE_TOKEN = "<image>"


def get_anyres_image_grid_shape(image_size, grid_pinpoints, patch_size):
    """
    Calculate the shape of the image patch grid after the preprocessing for images of any resolution.

    Args:
        image_size (`tuple`):
            The size of the input image in the format (height, width).
        grid_pinpoints (`List`):
            A list containing possible resolutions. Each item in the list should be a tuple or list
            of the form `(height, width)`.
        patch_size (`int`):
            The size of each image patch.

    Returns:
        tuple: The shape of the image patch grid in the format (width, height).
    """
    if not isinstance(grid_pinpoints, list):
        raise ValueError("grid_pinpoints should be a list of tuples or lists")

    height, width = select_best_resolution(image_size, grid_pinpoints)
    return height // patch_size, width // patch_size


def image_text_replacement(processor, image_input, config, image_id: int) -> str:
    if config.model_type == "idefics2":
        image_seq_len = 64
        image_str = f"{IDEFICS2_FAKE_TOKEN}{IDEFICS2_IMAGE_TOKEN * image_seq_len}{IDEFICS2_FAKE_TOKEN}"
        if processor.image_processor.do_image_splitting:
            image_str *= 5
        return image_str
    elif config.model_type == "llava_next":
        height, width = image_input["image_sizes"][image_id]
        num_features = get_number_of_features(height, width, config)
        from loguru import logger

jixx's avatar
jixx committed
62
63
64
        log_master(
            logger.info,
            f"Found {num_features} features in image of resolution {height}x{width}",
jixx's avatar
init  
jixx committed
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
        )
        return "<image>" * num_features

    elif config.model_type == "paligemma":
        return "<image>" * config.text_config.num_image_tokens
    else:
        raise RuntimeError(f"Unknown config {config.model_type} for multimodal")


def image_text_replacement_fixup(config, text: str) -> str:
    if config.model_type == "idefics2":
        return text.replace(
            f"{IDEFICS2_FAKE_TOKEN}{IDEFICS2_FAKE_TOKEN}", IDEFICS2_FAKE_TOKEN
        )
    return text


def get_unpadded_features(
    original_height: int,
    original_width: int,
    npatches: int,
    num_patch_height: int,
    num_patch_width: int,
) -> Tuple[int, int]:
    current_height = npatches * num_patch_height
    current_width = npatches * num_patch_width

    aspect_ratio: float = original_width / original_height
    current_aspect_ratio: float = current_width / current_height

    if aspect_ratio > current_aspect_ratio:
        new_height = (original_height * current_width) // original_width
        padding = (current_height - new_height) // 2
        current_height = current_height - (2 * padding)
    else:
        new_width = (original_width * current_height) // original_height
        padding = (current_width - new_width) // 2
        current_width = current_width - (2 * padding)

    unpadded_features = current_height * current_width
    newline_features = current_height
    return (unpadded_features, newline_features)


def get_number_of_features(height: int, width: int, config) -> int:
    # From config
    # Hardcoded for CLIP for now
    # image_grid_pinpoints = [[336, 672], [672, 336], [672, 672], [1008, 336], [336, 1008]]
    image_grid_pinpoints = config.image_grid_pinpoints
    image_size = config.vision_config.image_size
    patch_size = config.vision_config.patch_size

    assert image_size % patch_size == 0

    npatches = image_size // patch_size

    # Dimensions are intentionally swapped to be bug-compatible with
    # upstream: https://github.com/LLaVA-VL/LLaVA-NeXT/issues/59
    num_patch_width, num_patch_height = get_anyres_image_grid_shape(
        [height, width],
        image_grid_pinpoints,
        image_size,
    )
    unpadded_features, newline_features = get_unpadded_features(
        height, width, npatches, num_patch_height, num_patch_width
    )
    # The base patch covers the entire image
    base_features = npatches**2
    return unpadded_features + newline_features + base_features


class VlmCausalLMBatch(FlashCausalLMBatch):
    pixel_values: Optional[List[torch.Tensor]]
    pixel_attention_mask: Optional[List[torch.Tensor]]
    image_sizes: Optional[List[Tuple[int, int]]]

    @classmethod
    @tracer.start_as_current_span("concatenate")
    def concatenate(cls, batches):
        batch = super(VlmCausalLMBatch, cls).concatenate(batches)
        batch.pixel_values = None
        batch.pixel_attention_mask = None
        batch.image_sizes = None
        return batch

    @tracer.start_as_current_span("filter")
    def filter(self, request_ids: List[int]):
        batch = super().filter(request_ids)
        batch.pixel_values = None
        batch.pixel_attention_mask = None
        batch.image_sizes = None
        return batch

    @classmethod
    def batch_tokenized_inputs(
        cls, requests: Iterable[generate_pb2.Request], tokenizer, processor, config
    ):
        # Process images first. We need all of them so that the processor
        # can make the image splits the same size. And we need the final
        # sizes to insert correct number of image tokens.
        images = []
        for r in requests:
            for chunk in r.input_chunks.chunks:
                chunk_type = chunk.WhichOneof("chunk")
                if chunk_type == "text":
                    pass
                elif chunk_type == "image":
                    image = Image.open(BytesIO(chunk.image.data))
                    if config.model_type == "llava_next":
                        images.append(image)
                    else:
                        images.append([image])
                else:
                    raise RuntimeError(f"Invalid chunk type {chunk_type}")

        if images:
            image_inputs = processor.image_processor(images, return_tensors="pt")
        else:
            image_inputs = None

        batch_inputs = []
        max_truncation = 0
        image_id = 0
        for r in requests:
            full_text = ""
            for chunk in r.input_chunks.chunks:
                chunk_type = chunk.WhichOneof("chunk")
                if chunk_type == "text":
                    full_text += chunk.text
                elif chunk_type == "image":
                    full_text += image_text_replacement(
                        processor, image_inputs, config, image_id
                    )
                    image_id += 1

            full_text = image_text_replacement_fixup(config, full_text)

            batch_inputs.append(full_text)
            max_truncation = max(max_truncation, r.truncate)

        batch_tokenized_inputs = tokenizer(
            batch_inputs,
            truncation=True,
            max_length=max_truncation,
            add_special_tokens=not config.model_type == "paligemma",
        )["input_ids"]

        return batch_tokenized_inputs, image_inputs

    @classmethod
    def from_pb_processor(
        cls,
        pb: generate_pb2.Batch,
        tokenizer: PreTrainedTokenizerBase,
        processor,
        config,
        dtype: torch.dtype,
        device: torch.device,
    ) -> "VlmCausalLMBatch":
        batch_tokenized_inputs, image_inputs = cls.batch_tokenized_inputs(
            pb.requests, tokenizer, processor, config
        )
        batch = cls.from_tokenized(pb, tokenizer, batch_tokenized_inputs, dtype, device)
        if image_inputs is not None:
            batch.pixel_values = image_inputs["pixel_values"].to(device=device)
            if "pixel_attention_mask" in image_inputs:
                batch.pixel_attention_mask = image_inputs["pixel_attention_mask"].to(
                    device=device
                )
            else:
                batch.pixel_attention_mask = None
            if "image_sizes" in image_inputs:
                batch.image_sizes = image_inputs["image_sizes"].to(device=device)
            else:
                batch.image_sizes = None
        else:
            batch.pixel_values = None
            batch.pixel_attention_mask = None
            batch.image_sizes = None
        return batch


jixx's avatar
jixx committed
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
class VlmCausalLM(FlashCausalLM):
    def __init__(
        self,
        model_id: str,
        *,
        processor_class=AutoProcessor,
        processor_kwargs=None,
        batch_class=VlmCausalLMBatch,
        revision,
        trust_remote_code: bool,
        **kwargs,
    ):
        if PREFIX_CACHING:
            raise NotImplementedError("Vlm do not work with prefix caching yet")
        if processor_kwargs is None:
            processor_kwargs = {}
        self.processor = processor_class.from_pretrained(
            model_id,
            revision=revision,
            trust_remote_code=trust_remote_code,
            **processor_kwargs,
        )
        self.batch_class = batch_class
        super().__init__(
            model_id=model_id,
            revision=revision,
            trust_remote_code=trust_remote_code,
            # FIXME: VLM do not work with context chunking yet
            support_chunking=False,
            **kwargs,
        )

jixx's avatar
init  
jixx committed
279
280
    @property
    def batch_type(self) -> Type[VlmCausalLMBatch]:
jixx's avatar
jixx committed
281
282
283
284
        return self.batch_class

    def max_past(self) -> Optional[int]:
        return getattr(self.model.text_model, "max_past", None)
jixx's avatar
init  
jixx committed
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299

    def forward(
        self,
        batch: VlmCausalLMBatch,
        adapter_data: Optional[Dict[str, torch.Tensor]] = None,
    ) -> Tuple[torch.Tensor, Optional[torch.Tensor]]:
        # Model Forward
        if batch.speculative_ids is not None:
            input_ids = batch.input_ids
            position_ids = batch.position_ids
            cu_seqlen_prefill = batch.cu_seqlen_prefill
            kv_cache = self.kv_cache
            block_tables = batch.block_tables_tensor
            slots = batch.slots[batch.slot_indices]
            input_lengths = batch.input_lengths_tensor
jixx's avatar
jixx committed
300
            max_s = batch.max_current_length
jixx's avatar
init  
jixx committed
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
            lm_head_indices = batch.prefill_head_indices

            speculative_ids = batch.speculative_ids

            B, speculative_length = speculative_ids.shape
            new_length = speculative_length + 1
            new_input_ids = torch.cat(
                [input_ids.unsqueeze(-1), speculative_ids], dim=1
            ).reshape(-1)
            arange = torch.arange(new_length, device=position_ids.device).unsqueeze(0)
            arange_int = arange.to(dtype=torch.int32)
            new_position_ids = (
                position_ids.unsqueeze(-1).expand(B, new_length) + arange
            ).view(-1)
            slots = (slots.unsqueeze(-1).expand(B, new_length) + arange_int).view(-1)
            input_lengths = (
                input_lengths.unsqueeze(-1).expand(B, new_length) + arange_int
            ).view(-1)
jixx's avatar
jixx committed
319
320
321
            cache_lengths_tensor = (
                batch.cache_lengths_tensor.unsqueeze(-1).expand(B, new_length)
            ).reshape(-1)
jixx's avatar
init  
jixx committed
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341

            # Add Copy the block tables for all members
            block_tables = (
                block_tables.unsqueeze(1)
                .expand(B, new_length, -1)
                .reshape(B * new_length, -1)
                .contiguous()
            )
            max_s = max_s + speculative_length

            input_ids = new_input_ids
            position_ids = new_position_ids
        else:
            input_ids = batch.input_ids
            position_ids = batch.position_ids
            cu_seqlen_prefill = batch.cu_seqlen_prefill
            kv_cache = self.kv_cache
            block_tables = batch.block_tables_tensor
            slots = batch.slots[batch.slot_indices]
            input_lengths = batch.input_lengths_tensor
jixx's avatar
jixx committed
342
343
            cache_lengths_tensor = batch.cache_lengths_tensor
            max_s = batch.max_current_length
jixx's avatar
init  
jixx committed
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
            lm_head_indices = batch.prefill_head_indices

        if cu_seqlen_prefill is None and self.max_past() is not None:
            # In decode, not prefill, we're actually overwriting the KV-cache
            # in a circular buffer mode.
            # This makes sure the max_s for the decode pass is correct.
            max_s = min(self.max_past(), max_s)

        # Try to find an associated cuda graph
        bs = input_ids.shape[0]
        sorted_padded_bs = sorted([k for k in self.cuda_graphs.keys() if k >= bs])
        if sorted_padded_bs:
            # Get associated cuda graph
            cuda_graph = self.cuda_graphs[sorted_padded_bs[0]]
        else:
            cuda_graph = None
        if cu_seqlen_prefill is not None or cuda_graph is None:
jixx's avatar
jixx committed
361
362
363
364
365
366
367
368
369
370
            if ATTENTION == "flashinfer":
                block_tables = block_tables_to_ragged(
                    block_tables=block_tables,
                    input_lengths=batch.input_lengths,
                    cache_lengths=batch.cache_lengths,
                    input_lengths_tensor=batch.input_lengths_tensor,
                    cache_lengths_tensor=batch.cache_lengths_tensor,
                    max_current_length=batch.max_current_length,
                )
            with self._forward_context(
jixx's avatar
init  
jixx committed
371
                block_tables=block_tables,
jixx's avatar
jixx committed
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
                cu_seqlen_prefill=cu_seqlen_prefill,
                input_lengths_tensor=input_lengths,
                cache_lengths_tensor=cache_lengths_tensor,
            ):
                seqlen = Seqlen(
                    input_lengths=input_lengths,
                    cache_lengths=cache_lengths_tensor,
                    cu_seqlen_q=cu_seqlen_prefill,
                    max_q=batch.max_input_length,
                    max_k=batch.max_current_length,
                )
                logits, speculative_logits = self.model.forward(
                    input_ids=input_ids,
                    position_ids=position_ids,
                    cu_seqlen_prefill=cu_seqlen_prefill,
                    kv_cache=kv_cache,
                    block_tables=block_tables,
                    slots=slots,
                    seqlen=seqlen,
                    max_s=max_s,
                    prefill_cache_indices=batch.prefill_cache_indices,
                    lm_head_indices=lm_head_indices,
                    pixel_values=batch.pixel_values,
                    pixel_attention_mask=batch.pixel_attention_mask,
                    image_sizes=batch.image_sizes,
                )
                if batch.prefill_cache_indices is not None:
                    batch.prefill_cache_indices = None
                if batch.pixel_values is not None:
                    batch.pixel_values = None
                if batch.pixel_attention_mask is not None:
                    batch.pixel_attention_mask = None
                if batch.image_sizes is not None:
                    batch.image_sizes = None
                return logits, speculative_logits
jixx's avatar
init  
jixx committed
407
408
409
410
411

        # Copy inputs to the static inputs of the cuda graph
        # Static inputs are potentially padded
        cuda_graph["input_ids"][: input_ids.shape[0]] = input_ids
        cuda_graph["position_ids"][: position_ids.shape[0]] = position_ids
jixx's avatar
jixx committed
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
        if ATTENTION == "flashinfer":
            block_tables = block_tables_to_ragged(
                block_tables=block_tables,
                input_lengths=batch.input_lengths,
                cache_lengths=batch.cache_lengths,
                input_lengths_tensor=batch.input_lengths_tensor,
                cache_lengths_tensor=batch.cache_lengths_tensor,
                max_current_length=batch.max_current_length,
            )
            cuda_graph["block_tables"][: block_tables.shape[0]] = block_tables
        else:
            cuda_graph["block_tables"][
                : block_tables.shape[0], : block_tables.shape[1]
            ] = block_tables

        # XXX: This is working only because block 0 is reserved for the healthcheck
        # so it doesn't matter if we override it with bogus values.
        cuda_graph["slots"].fill_(0)
jixx's avatar
init  
jixx committed
430
431
432
        cuda_graph["slots"][: slots.shape[0]] = slots
        cuda_graph["input_lengths"].zero_()
        cuda_graph["input_lengths"][: input_lengths.shape[0]] = input_lengths
jixx's avatar
jixx committed
433
434
435
436
437
438
439
440
441
442
443
444
445
446
        cuda_graph["cache_lengths"].zero_()
        cuda_graph["cache_lengths"][
            : cache_lengths_tensor.shape[0]
        ] = cache_lengths_tensor

        with self._forward_context(
            block_tables=cuda_graph["block_tables"],
            cu_seqlen_prefill=None,
            input_lengths_tensor=cuda_graph["input_lengths"],
            cache_lengths_tensor=cuda_graph["cache_lengths"],
            state=cuda_graph["state"],
        ):
            # Replay the graph
            cuda_graph["graph"].replay()
jixx's avatar
init  
jixx committed
447
448
449
450
451
452
453
454
455

        # Slice output to the correct shape
        speculative_logits = (
            cuda_graph["speculative_logits"][:bs]
            if cuda_graph["speculative_logits"] is not None
            else None
        )
        logits = cuda_graph["logits"][:bs]
        return logits, speculative_logits