fp8.py 14.8 KB
Newer Older
jixx's avatar
jixx committed
1
2
3
4
from dataclasses import dataclass
import os
from typing import Optional, Tuple, Type, Union, List

jixx's avatar
init  
jixx committed
5
import torch
jixx's avatar
jixx committed
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
from loguru import logger

from text_generation_server.utils.import_utils import SYSTEM
from text_generation_server.utils.weights import (
    Weight,
    WeightsLoader,
    UnquantizedWeight,
    Weights,
)
from text_generation_server.utils.log import log_once

try:
    import marlin_kernels
except ImportError:
    marlin_kernels = None


if SYSTEM == "cuda" and marlin_kernels is not None:
    major, minor = torch.cuda.get_device_capability()
    CUTLASS_FP8_AVAILABLE = marlin_kernels.cutlass_scaled_mm_supports_fp8(
        major * 10 + minor
    )
else:
    CUTLASS_FP8_AVAILABLE = False


def get_fp8_linear() -> Type[torch.nn.Module]:
    """
    Return an FP8 linear `Module` that is compatible with the current system.
    """

    if SYSTEM == "cuda":

        major, _ = torch.cuda.get_device_capability()
        if major == 8 and os.getenv("USE_CUTLASS_W8A8", "0") != "1":
            # NOTE: Capability 8.9 is supported by cutlass kernels, but FP8-Marlin
            #       gives better decoding throughput on L4 and L40.
            from text_generation_server.layers.marlin import GPTQMarlinFP8Linear

            return GPTQMarlinFP8Linear

    # On other systems let Torch decide if the hardware supports FP8.
    return Fp8Linear


def normalize_e4m3fn_to_e4m3fnuz(
    weight: torch.Tensor,
    weight_scale: torch.Tensor,
    input_scale: Optional[torch.Tensor] = None,
) -> Tuple[torch.Tensor, torch.Tensor, Optional[torch.Tensor]]:
    assert weight.dtype == torch.float8_e4m3fn
    # The bits pattern 10000000(-128) represents zero in e4m3fn
    # but NaN in e4m3fnuz. So here we set it to 0.
    # https://onnx.ai/onnx/technical/float8.html
    weight_as_int8 = weight.view(torch.int8)
    ROCM_FP8_NAN_AS_INT = -128
    weight_as_int8[weight_as_int8 == ROCM_FP8_NAN_AS_INT] = 0
    weight = weight_as_int8.view(torch.float8_e4m3fnuz)

    # For the same bits representation, e4m3fnuz value is half of
    # the e4m3fn value, so we should double the scaling factor to
    # get the same dequantized value.
    # https://onnx.ai/onnx/technical/float8.html
    weight_scale = weight_scale * 2.0
    if input_scale is not None:
        input_scale = input_scale * 2.0
    return weight, weight_scale, input_scale


def fp8_quantize(
    weight: torch.Tensor,
    scale: Optional[torch.Tensor] = None,
    scale_upper_bound: Optional[torch.Tensor] = None,
    qdtype: torch.dtype = torch.float8_e4m3fn,
    scalar: bool = False,
):
    """
    This function returns a reciprocal of the scale, so that a tensor can be unscaled
    by multiplying it with the returned scale. If a scale is given through the `scale`
    argument, it must also be a reciprocal (so that scales from an FP8 checkpoint can
    be used without modification).
    """
    if marlin_kernels is not None:
        shape = weight.shape
        qweight, scale = marlin_kernels.scaled_fp8_quant(
            weight.reshape(-1, shape[-1]),
            dtype=qdtype,
            scale=scale,
            scale_ub=scale_upper_bound,
            # TODO: don't do this when we have to use the Torch kernel.
            use_per_token_if_dynamic=not scalar,
        )
jixx's avatar
init  
jixx committed
98

jixx's avatar
jixx committed
99
        return qweight.reshape(shape), scale
jixx's avatar
init  
jixx committed
100
101

    finfo = torch.finfo(qdtype)
jixx's avatar
jixx committed
102
103
104
105
106
107
108
109
110
111
112
113
114

    if scale is None:
        # Calculate the scale as dtype max divided by absmax
        scale = finfo.max / weight.abs().max().clamp(min=1e-12, max=scale_upper_bound)
        # scale and clamp the tensor to bring it to
        # the representative range of float8 data type
        # (as default cast is unsaturated)
        qweight = (weight * scale).clamp(min=finfo.min, max=finfo.max)
        scale = scale.float().reciprocal()
    else:
        # Use reciprocal to avoid more expensive division.
        qweight = (weight * scale.reciprocal()).clamp(min=finfo.min, max=finfo.max)

jixx's avatar
init  
jixx committed
115
116
117
    # Return both float8 data and the inverse scale (as float),
    # as both required as inputs to torch._scaled_mm
    qweight = qweight.to(qdtype)
jixx's avatar
jixx committed
118
119
120
121

    if SYSTEM == "rocm":
        qweight, scale, _ = normalize_e4m3fn_to_e4m3fnuz(qweight, scale)

jixx's avatar
init  
jixx committed
122
123
124
    return qweight, scale


jixx's avatar
jixx committed
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
class HybridFP8UnquantLoader(WeightsLoader):
    """Weight loader that loads FP8 and unquantized Torch tensors."""

    def __init__(self, activation_scale_ub: Optional[float], to_fp8: bool):
        self.activation_scale_ub = activation_scale_ub
        self.to_fp8 = to_fp8

    def get_weights(self, weights: "Weights", prefix: str):
        w = weights.get_tensor(f"{prefix}.weight")

        if w.dtype == torch.float8_e4m3fn:
            # FP8 branch
            scale = (
                weights.get_tensor(f"{prefix}.weight_scale", to_dtype=False)
                .reshape(-1)
                .expand(w.shape[0])
            )

            input_scale = None
            if weights.has_tensor(f"{prefix}.input_scale"):
                input_scale = weights.get_tensor(
                    f"{prefix}.input_scale", to_dtype=False
                ).reshape(-1)

            return Fp8Weight(
                weight=w,
                weight_scale=scale,
                input_scale=input_scale,
                activation_scale_ub=self.activation_scale_ub,
                dtype=weights.dtype,
            )
        if self.to_fp8:
            return Fp8Weight(weight=w, dtype=weights.dtype)

        return UnquantizedWeight(w)

    def get_weights_col_packed(
        self,
        weights: Weights,
        prefix: str,
        block_sizes: Union[int, List[int]],
    ):
        w = weights.get_packed_sharded(
            f"{prefix}.weight", dim=0, block_sizes=block_sizes
        )

        if w.dtype == torch.float8_e4m3fn:
            # FP8 branch
            scale = weights.get_tensor(f"{prefix}.weight_scale", to_dtype=False)
            if scale.numel() > 1:
                scale = weights.get_packed_sharded(
                    f"{prefix}.weight_scale",
                    dim=0,
                    block_sizes=block_sizes,
                    to_dtype=False,
                )
            scale = scale.reshape(-1).expand(w.shape[0])

            input_scale = None
            if weights.has_tensor(f"{prefix}.input_scale"):
                input_scale = weights.get_tensor(
                    f"{prefix}.input_scale", to_dtype=False
                )
                if input_scale.numel() > 1:
                    input_scale = weights.get_packed_sharded(
                        f"{prefix}.input_scale",
                        dim=0,
                        block_sizes=block_sizes,
                        to_dtype=False,
                    )
                input_scale = input_scale.reshape(-1).max()

            return Fp8Weight(
                weight=w,
                weight_scale=scale,
                input_scale=input_scale,
                activation_scale_ub=self.activation_scale_ub,
                dtype=weights.dtype,
            )
        if self.to_fp8:
            return Fp8Weight(weight=w, dtype=weights.dtype)

        return UnquantizedWeight(w)

    def get_multi_weights_col(self, weights: "Weights", prefixes: List[str], dim: int):
        # FIXME: Force to_device to false as fp8 weights do not support torch.cat on device yet
        w = [
            weights.get_sharded(f"{p}.weight", dim=0, to_device=False) for p in prefixes
        ]
        shapes = [x.shape for x in w]

        # Concat then send to the device
        w = torch.cat(w, dim=dim).to(weights.device)

        # FP8 branch
        if w.dtype == torch.float8_e4m3fn:
            scale = [
                _load_scalar_or_matrix_scale(weights, f"{p}.weight_scale", shape)
                for p, shape in zip(prefixes, shapes)
            ]
            scale = torch.cat(scale, dim=0).reshape(-1)

            input_scale = [
                _load_scalar_or_matrix_scale(weights, f"{p}.input_scale", shape)
                for p, shape in zip(prefixes, shapes)
                if weights.has_tensor(f"{p}.input_scale")
            ]
            assert len(input_scale) == 0 or len(input_scale) == len(prefixes)
            input_scale = (
                torch.cat(input_scale, dim=0).reshape(-1).max()
                if len(input_scale) != 0
                else None
            )

            return Fp8Weight(
                weight=w,
                weight_scale=scale,
                input_scale=input_scale,
                activation_scale_ub=self.activation_scale_ub,
                dtype=weights.dtype,
            )
        if self.to_fp8:
            return Fp8Weight(weight=w, dtype=weights.dtype)

        return UnquantizedWeight(w)

    def get_weights_row(self, weights: "Weights", prefix: str):
        w = weights.get_sharded(f"{prefix}.weight", dim=1)
        # FP8 branch
        if w.dtype == torch.float8_e4m3fn:
            scale = (
                weights.get_tensor(f"{prefix}.weight_scale", to_dtype=False)
                .reshape(-1)
                .expand(w.shape[0])
            )
            input_scale = None
            if weights.has_tensor(f"{prefix}.input_scale"):
                input_scale = weights.get_tensor(
                    f"{prefix}.input_scale", to_dtype=False
                ).reshape(-1)

            return Fp8Weight(
                weight=w,
                weight_scale=scale,
                input_scale=input_scale,
                activation_scale_ub=self.activation_scale_ub,
                dtype=weights.dtype,
            )
        if self.to_fp8:
            return Fp8Weight(weight=w, dtype=weights.dtype)

        return UnquantizedWeight(w)


@dataclass
class Fp8Weight(Weight):
    weight: torch.Tensor
    dtype: torch.dtype
    weight_scale: Optional[torch.Tensor] = None
    input_scale: Optional[torch.Tensor] = None
    activation_scale_ub: Optional[float] = None

    def get_linear(self, bias: torch.Tensor):
        if self.weight_scale is None:
            return get_fp8_linear().from_unquant(self.weight, bias, self.dtype)
        # This is not checked by the fbgemm kernels, but they require contiguous
        # memory. Can be non-contiguous when we e.g. expand from scalars.
        self.weight_scale = self.weight_scale.contiguous()
        return get_fp8_linear().from_fp8(
            weight=self.weight,
            scale=self.weight_scale,
            dtype=self.dtype,
            bias=bias,
            input_scale=self.input_scale,
            scale_upper_bound=self.activation_scale_ub,
        )


jixx's avatar
init  
jixx committed
303
class Fp8Linear(torch.nn.Module):
jixx's avatar
jixx committed
304
305
    _device_identity_cache = {}

jixx's avatar
init  
jixx committed
306
307
    def __init__(
        self,
jixx's avatar
jixx committed
308
309
310
311
312
313
        qweight: torch.Tensor,
        scale: torch.Tensor,
        dtype: torch.dtype,
        bias: Optional[torch.Tensor] = None,
        input_scale: Optional[torch.Tensor] = None,
        scale_upper_bound: Optional[float] = None,
jixx's avatar
init  
jixx committed
314
315
    ) -> None:
        super().__init__()
jixx's avatar
jixx committed
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
        if CUTLASS_FP8_AVAILABLE:
            log_once(logger.info, "Using cutlass w8a8 kernels")
        if SYSTEM == "rocm" and qweight.dtype == torch.float8_e4m3fn:
            qweight, scale, _ = normalize_e4m3fn_to_e4m3fnuz(
                weight=qweight, weight_scale=scale
            )

        self.dtype = dtype
        self.qweight = qweight
        self.scale = scale.float()
        self.input_scale = input_scale.float() if input_scale is not None else None

        if CUTLASS_FP8_AVAILABLE and scale_upper_bound is not None:
            self.scale_upper_bound = torch.tensor(
                scale_upper_bound, dtype=torch.float32, device=qweight.device
            )
        else:
            self.scale_upper_bound = scale_upper_bound
jixx's avatar
init  
jixx committed
334
335
336

        self.bias = bias if bias is not None else None

jixx's avatar
jixx committed
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
    @classmethod
    def from_unquant(cls, weight, bias, dtype):
        qweight, scale = fp8_quantize(weight, scalar=not CUTLASS_FP8_AVAILABLE)
        return cls(
            qweight=qweight,
            scale=scale,
            dtype=dtype,
            bias=bias,
            input_scale=None,
            scale_upper_bound=None,
        )

    @classmethod
    def from_fp8(
        cls,
        weight: torch.Tensor,
        scale: torch.Tensor,
        dtype: torch.dtype,
        bias: Optional[torch.Tensor] = None,
        **kwargs,
    ) -> "Fp8Linear":
        input_scale = kwargs.get("input_scale", None)
        scale_upper_bound = kwargs.get("scale_upper_bound", None)

        return cls(
            qweight=weight,
            scale=scale,
            input_scale=input_scale,
            scale_upper_bound=scale_upper_bound,
            bias=bias,
            dtype=dtype,
        )

    @classmethod
    def get_shared_device_identity(cls, device):
        # Input scaling factors are no longer optional in _scaled_mm starting
        # from pytorch 2.5. Allocating a dummy tensor to pass as input_scale
        if device not in cls._device_identity_cache:
            cls._device_identity_cache[device] = torch.ones(1, device=device)
        return cls._device_identity_cache[device]

jixx's avatar
init  
jixx committed
378
    def forward(self, input: torch.Tensor) -> torch.Tensor:
jixx's avatar
jixx committed
379
380
381
382
383
384
385
386
387
388
389
390
391
392
        if CUTLASS_FP8_AVAILABLE:
            # cutlass FP8 supports per-token scales, so get non-scalar scales.
            qinput, scale = fp8_quantize(
                input, scale_upper_bound=self.scale_upper_bound, scalar=False
            )
            return marlin_kernels.cutlass_scaled_mm(
                qinput, self.qweight.t(), scale, self.scale, input.dtype, self.bias
            )

        qinput, scale = fp8_quantize(
            input,
            self.input_scale,
            scale_upper_bound=self.scale_upper_bound,
            scalar=True,
jixx's avatar
init  
jixx committed
393
        )
jixx's avatar
jixx committed
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430

        per_tensor_weights = self.scale.numel() == 1
        per_tensor_activations = scale.numel() == 1

        if SYSTEM != "rocm" or (per_tensor_weights and per_tensor_activations):
            output = torch._scaled_mm(
                qinput,
                self.qweight.t(),
                out_dtype=self.dtype,
                scale_a=scale,
                scale_b=self.scale,
                bias=self.bias,
            )

            if isinstance(output, tuple) and len(output) == 2:
                output = output[0]
        else:
            device_identity = None
            if SYSTEM == "rocm":
                device_identity = self.get_shared_device_identity(self.qweight.device)

            output = torch._scaled_mm(
                qinput,
                self.qweight.t(),
                scale_a=device_identity,
                scale_b=device_identity,
                out_dtype=torch.float32,
            )
            if isinstance(output, tuple) and len(output) == 2:
                output = output[0]

            output = output * scale * self.scale.t()
            if self.bias is not None:
                output = output + self.bias

            output = output.to(dtype=self.dtype)

jixx's avatar
init  
jixx committed
431
        return output
jixx's avatar
jixx committed
432
433
434
435
436
437
438


def _load_scalar_or_matrix_scale(weights: Weights, prefix: str, shape: torch.Size):
    scale = weights.get_tensor(prefix, to_dtype=False)
    if scale.numel() > 1:
        scale = weights.get_sharded(prefix, dim=0, to_dtype=False)
    return scale.reshape(-1).expand(shape[0])