exl2.py 2.4 KB
Newer Older
jixx's avatar
init  
jixx committed
1
from dataclasses import dataclass
jixx's avatar
jixx committed
2
3
4
5
from typing import List, Union

import torch
from text_generation_server.utils.weights import Weight, Weights, WeightsLoader
jixx's avatar
init  
jixx committed
6
7
8


@dataclass
jixx's avatar
jixx committed
9
class Exl2Weight(Weight):
jixx's avatar
init  
jixx committed
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
    """
    Exllama2 exl2 quantized weights.
    """

    q_weight: torch.Tensor
    q_scale: torch.Tensor
    q_invperm: torch.Tensor
    q_scale_max: torch.Tensor
    q_groups: torch.Tensor

    def __post_init__(self):
        self.q_scale_max /= 256
        self.q_invperm = self.q_invperm.short()

    @property
    def device(self) -> torch.device:
        return self.q_weight.device
jixx's avatar
jixx committed
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78

    def get_linear(self, bias: torch.Tensor):
        from text_generation_server.layers.gptq import ExllamaQuantLinear

        return ExllamaQuantLinear(self, bias)


class Exl2WeightsLoader(WeightsLoader):
    """Loader for exl2-quantized weights."""

    def get_weights(self, weights: "Weights", prefix: str):
        """
        Get weights at the given prefix and apply without tensor paralllism.
        """
        try:
            q_weight = weights.get_tensor(f"{prefix}.q_weight")
        except RuntimeError:
            raise RuntimeError(
                "Cannot load `exl2`-quantized weight, make sure the model is already quantized."
            )

        q_scale = weights.get_tensor(f"{prefix}.q_scale")
        q_invperm = weights.get_tensor(f"{prefix}.q_invperm")
        q_scale_max = weights.get_tensor(f"{prefix}.q_scale_max")
        q_groups = weights.get_tensor(f"{prefix}.q_groups")

        return Exl2Weight(
            q_weight=q_weight,
            q_scale=q_scale,
            q_invperm=q_invperm,
            q_scale_max=q_scale_max,
            q_groups=q_groups,
        )

    def get_weights_col_packed(
        self,
        weights: Weights,
        prefix: str,
        block_sizes: Union[int, List[int]],
    ):
        raise RuntimeError("Column-packed weights are not supported for exl")

    def get_weights_col(self, weights: Weights, prefix: str):
        # Sharding is not yet supported, so we return the weights as-is.
        return self.get_weights(weights, prefix)

    def get_multi_weights_col(self, weights: Weights, prefixes: List[str], dim: int):
        raise ValueError("get_multi_weights_col is not supported for exl2")

    def get_weights_row(self, weights: Weights, prefix: str):
        # Sharding is not yet supported, so we return the weights as-is.
        return self.get_weights(weights, prefix)