server.rs 101 KB
Newer Older
jixx's avatar
init  
jixx committed
1
2
/// HTTP Server logic
use crate::config::Config;
jixx's avatar
jixx committed
3
4
use crate::infer::tool_grammar::ToolGrammar;
use crate::infer::{Backend, Infer, InferError, InferResponse, InferStreamResponse};
jixx's avatar
init  
jixx committed
5
6
7
8
9
#[cfg(feature = "kserve")]
use crate::kserve::{
    kerve_server_metadata, kserve_health_live, kserve_health_ready, kserve_model_infer,
    kserve_model_metadata, kserve_model_metadata_ready,
};
jixx's avatar
jixx committed
10
11
12
13
use crate::sagemaker::{
    sagemaker_compatibility, SagemakerRequest, SagemakerResponse, SagemakerStreamResponse,
    __path_sagemaker_compatibility,
};
jixx's avatar
init  
jixx committed
14
use crate::validation::ValidationError;
jixx's avatar
jixx committed
15
16
use crate::vertex::vertex_compatibility;
use crate::ChatTokenizeResponse;
jixx's avatar
init  
jixx committed
17
use crate::{
jixx's avatar
jixx committed
18
19
20
21
22
    usage_stats, BestOfSequence, Details, ErrorResponse, FinishReason, FunctionName,
    GenerateParameters, GenerateRequest, GenerateResponse, GrammarType, HubModelInfo,
    HubProcessorConfig, HubTokenizerConfig, Info, Message, MessageChunk, MessageContent,
    OutputMessage, PrefillToken, SimpleToken, StreamDetails, StreamOptions, StreamResponse,
    TextMessage, Token, TokenizeResponse, ToolCallDelta, ToolCallMessage, Url, Usage, Validation,
jixx's avatar
init  
jixx committed
23
24
25
26
27
};
use crate::{
    ChatCompletion, ChatCompletionChoice, ChatCompletionChunk, ChatCompletionComplete,
    ChatCompletionDelta, ChatCompletionLogprob, ChatCompletionLogprobs, ChatCompletionTopLogprob,
    ChatRequest, Chunk, CompatGenerateRequest, Completion, CompletionComplete, CompletionFinal,
jixx's avatar
jixx committed
28
    CompletionRequest, CompletionType, DeltaToolCall, Function, Prompt, Tool,
jixx's avatar
init  
jixx committed
29
};
jixx's avatar
jixx committed
30
31
use crate::{FunctionDefinition, HubPreprocessorConfig, ToolCall, ToolChoice, ToolType};
use crate::{ModelInfo, ModelsInfo};
jixx's avatar
init  
jixx committed
32
33
use async_stream::__private::AsyncStream;
use axum::extract::Extension;
jixx's avatar
jixx committed
34
use axum::http::{HeaderMap, HeaderValue, Method, StatusCode};
jixx's avatar
init  
jixx committed
35
36
37
38
39
40
41
42
43
use axum::response::sse::{Event, KeepAlive, Sse};
use axum::response::{IntoResponse, Response};
use axum::routing::{get, post};
use axum::{http, Json, Router};
use axum_tracing_opentelemetry::middleware::OtelAxumLayer;
use futures::stream::StreamExt;
use futures::stream::{FuturesOrdered, FuturesUnordered};
use futures::Stream;
use futures::TryStreamExt;
jixx's avatar
jixx committed
44
45
46
use hf_hub::api::tokio::{Api, ApiBuilder, ApiRepo};
use hf_hub::{Cache, Repo, RepoType};
use http::header::AUTHORIZATION;
jixx's avatar
init  
jixx committed
47
use metrics_exporter_prometheus::{Matcher, PrometheusBuilder, PrometheusHandle};
jixx's avatar
jixx committed
48
49
use pyo3::types::IntoPyDict;
use regex::Regex;
jixx's avatar
init  
jixx committed
50
51
use serde_json::Value;
use std::convert::Infallible;
jixx's avatar
jixx committed
52
53
54
55
use std::fs::File;
use std::io::BufReader;
use std::net::{IpAddr, Ipv4Addr, SocketAddr};
use std::path::{Path, PathBuf};
jixx's avatar
init  
jixx committed
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
use thiserror::Error;
use tokenizers::Tokenizer;
use tokio::select;
use tokio::signal;
use tokio::sync::oneshot;
use tokio::time::Instant;
use tower_http::cors::{AllowOrigin, CorsLayer};
use tracing::{info_span, instrument, Instrument};
use utoipa::OpenApi;
use utoipa_swagger_ui::SwaggerUi;

/// Generate tokens if `stream == false` or a stream of token if `stream == true`
#[utoipa::path(
post,
tag = "Text Generation Inference",
path = "/",
request_body = CompatGenerateRequest,
responses(
(status = 200, description = "Generated Text",
content(
("application/json" = GenerateResponse),
("text/event-stream" = StreamResponse),
)),
(status = 424, description = "Generation Error", body = ErrorResponse,
example = json ! ({"error": "Request failed during generation"})),
(status = 429, description = "Model is overloaded", body = ErrorResponse,
example = json ! ({"error": "Model is overloaded"})),
(status = 422, description = "Input validation error", body = ErrorResponse,
example = json ! ({"error": "Input validation error"})),
(status = 500, description = "Incomplete generation", body = ErrorResponse,
example = json ! ({"error": "Incomplete generation"})),
)
)]
#[instrument(skip(infer, req))]
jixx's avatar
jixx committed
90
pub(crate) async fn compat_generate(
jixx's avatar
init  
jixx committed
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
    Extension(default_return_full_text): Extension<bool>,
    infer: Extension<Infer>,
    compute_type: Extension<ComputeType>,
    Json(mut req): Json<CompatGenerateRequest>,
) -> Result<Response, (StatusCode, Json<ErrorResponse>)> {
    // default return_full_text given the pipeline_tag
    if req.parameters.return_full_text.is_none() {
        req.parameters.return_full_text = Some(default_return_full_text)
    }

    // switch on stream
    if req.stream {
        Ok(generate_stream(infer, compute_type, Json(req.into()))
            .await
            .into_response())
    } else {
        let (headers, Json(generation)) = generate(infer, compute_type, Json(req.into())).await?;
        // wrap generation inside a Vec to match api-inference
        Ok((headers, Json(vec![generation])).into_response())
    }
}

/// Text Generation Inference endpoint info
#[utoipa::path(
get,
tag = "Text Generation Inference",
path = "/info",
responses((status = 200, description = "Served model info", body = Info))
)]
#[instrument]
async fn get_model_info(info: Extension<Info>) -> Json<Info> {
    Json(info.0)
}

jixx's avatar
jixx committed
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
#[utoipa::path(
get,
tag = "Text Generation Inference",
path = "/v1/models",
responses(
(status = 200, description = "Served model info", body = ModelInfo),
(status = 404, description = "Model not found", body = ErrorResponse),
)
)]
#[instrument(skip(info))]
/// Get model info
async fn openai_get_model_info(info: Extension<Info>) -> Json<ModelsInfo> {
    Json(ModelsInfo {
        data: vec![ModelInfo {
            id: info.0.model_id.clone(),
            object: "model".to_string(),
            created: 0, // TODO: determine how to get this
            owned_by: info.0.model_id.clone(),
        }],
        ..Default::default()
    })
}

#[utoipa::path(
    post,
    tag = "Text Generation Inference",
    path = "/chat_tokenize",
    request_body = ChatRequest,
    responses((status = 200, description = "Templated and tokenized ChatRequest", body = ChatTokenizeResponse))
)]
async fn get_chat_tokenize(
    Extension(infer): Extension<Infer>,
    Json(chat): Json<ChatRequest>,
) -> Result<(HeaderMap, Json<ChatTokenizeResponse>), (StatusCode, Json<ErrorResponse>)> {
    metrics::counter!("tgi_request_count").increment(1);

    let generate_request: GenerateRequest = chat.try_into_generate(&infer)?.0;
    let input = generate_request.inputs.clone();
    let encoding = infer.tokenize(generate_request).await?;
    if let Some(encoding) = encoding {
        let tokens: Vec<SimpleToken> = encoding
            .get_ids()
            .iter()
            .zip(encoding.get_offsets())
            .map(|(&id, &(start, stop))| {
                let text = input
                    .chars()
                    .skip(start)
                    .take(stop - start)
                    .collect::<String>();
                SimpleToken {
                    id,
                    text,
                    start,
                    stop,
                }
            })
            .collect();

        let resp = ChatTokenizeResponse {
            tokenize_response: TokenizeResponse(tokens),
            templated_text: input,
        };
        Ok((HeaderMap::new(), Json(resp)))
    } else {
        Err((
            StatusCode::NOT_FOUND,
            Json(ErrorResponse {
                error: "No fast tokenizer or tokenizer.json for this model".to_string(),
                error_type: "no fast tokenizer".to_string(),
            }),
        ))
    }
}

jixx's avatar
init  
jixx committed
200
201
202
203
204
205
206
207
208
209
#[utoipa::path(
get,
tag = "Text Generation Inference",
path = "/health",
responses(
(status = 200, description = "Everything is working fine"),
(status = 503, description = "Text generation inference is down", body = ErrorResponse,
example = json ! ({"error": "unhealthy", "error_type": "healthcheck"})),
)
)]
jixx's avatar
jixx committed
210
#[instrument(skip(infer))]
jixx's avatar
init  
jixx committed
211
/// Health check method
jixx's avatar
jixx committed
212
213
async fn health(infer: Extension<Infer>) -> Result<(), (StatusCode, Json<ErrorResponse>)> {
    match infer.health().await {
jixx's avatar
init  
jixx committed
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
        true => Ok(()),
        false => Err((
            StatusCode::SERVICE_UNAVAILABLE,
            Json(ErrorResponse {
                error: "unhealthy".to_string(),
                error_type: "healthcheck".to_string(),
            }),
        )),
    }
}

/// Generate tokens
#[utoipa::path(
post,
tag = "Text Generation Inference",
path = "/generate",
request_body = GenerateRequest,
responses(
(status = 200, description = "Generated Text", body = GenerateResponse),
(status = 424, description = "Generation Error", body = ErrorResponse,
example = json ! ({"error": "Request failed during generation"})),
(status = 429, description = "Model is overloaded", body = ErrorResponse,
example = json ! ({"error": "Model is overloaded"})),
(status = 422, description = "Input validation error", body = ErrorResponse,
example = json ! ({"error": "Input validation error"})),
(status = 500, description = "Incomplete generation", body = ErrorResponse,
example = json ! ({"error": "Incomplete generation"})),
)
)]
#[instrument(
skip_all,
fields(
parameters = ? req.parameters,
total_time,
validation_time,
queue_time,
inference_time,
time_per_token,
seed,
)
)]
async fn generate(
    infer: Extension<Infer>,
    Extension(ComputeType(compute_type)): Extension<ComputeType>,
    Json(req): Json<GenerateRequest>,
) -> Result<(HeaderMap, Json<GenerateResponse>), (StatusCode, Json<ErrorResponse>)> {
    let span = tracing::Span::current();
    generate_internal(infer, ComputeType(compute_type), Json(req), span).await
}

pub(crate) async fn generate_internal(
    infer: Extension<Infer>,
    ComputeType(compute_type): ComputeType,
    Json(req): Json<GenerateRequest>,
    span: tracing::Span,
) -> Result<(HeaderMap, Json<GenerateResponse>), (StatusCode, Json<ErrorResponse>)> {
    let start_time = Instant::now();
jixx's avatar
jixx committed
271
    metrics::counter!("tgi_request_count").increment(1);
jixx's avatar
init  
jixx committed
272
273

    // Do not long ultra long inputs, like image payloads.
jixx's avatar
jixx committed
274
275
276
277
    tracing::debug!(
        "Input: {}",
        &req.inputs.chars().take(1000).collect::<String>()
    );
jixx's avatar
init  
jixx committed
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389

    let compute_characters = req.inputs.chars().count();
    let mut add_prompt = None;
    if req.parameters.return_full_text.unwrap_or(false) {
        add_prompt = Some(req.inputs.clone());
    }

    let details: bool = req.parameters.details || req.parameters.decoder_input_details;

    // Inference
    let (response, best_of_responses) = match req.parameters.best_of {
        Some(best_of) if best_of > 1 => {
            let (response, best_of_responses) = infer.generate_best_of(req, best_of).await?;
            (response, Some(best_of_responses))
        }
        _ => (infer.generate(req).await?, None),
    };

    // Token details
    let input_length = response._input_length;
    let details = match details {
        true => {
            // convert best_of_responses
            let best_of_sequences = best_of_responses.map(|responses: Vec<InferResponse>| {
                responses
                    .into_iter()
                    .map(|response: InferResponse| {
                        // Add prompt if return_full_text
                        let mut output_text = response.generated_text.text;
                        if let Some(prompt) = &add_prompt {
                            output_text = prompt.clone() + &output_text;
                        }

                        BestOfSequence {
                            generated_text: output_text,
                            finish_reason: response.generated_text.finish_reason,
                            generated_tokens: response.generated_text.generated_tokens,
                            prefill: response.prefill,
                            tokens: response.tokens,
                            top_tokens: response.top_tokens,
                            seed: response.generated_text.seed,
                        }
                    })
                    .collect()
            });

            Some(Details {
                finish_reason: response.generated_text.finish_reason,
                generated_tokens: response.generated_text.generated_tokens,
                prefill: response.prefill,
                tokens: response.tokens,
                seed: response.generated_text.seed,
                best_of_sequences,
                top_tokens: response.top_tokens,
            })
        }
        false => None,
    };

    // Timings
    let total_time = start_time.elapsed();
    let validation_time = response.queued - start_time;
    let queue_time = response.start - response.queued;
    let inference_time = Instant::now() - response.start;
    let time_per_token = inference_time / response.generated_text.generated_tokens;

    // Tracing metadata
    span.record("total_time", format!("{total_time:?}"));
    span.record("validation_time", format!("{validation_time:?}"));
    span.record("queue_time", format!("{queue_time:?}"));
    span.record("inference_time", format!("{inference_time:?}"));
    span.record("time_per_token", format!("{time_per_token:?}"));
    span.record("seed", format!("{:?}", response.generated_text.seed));

    // Headers
    let mut headers = HeaderMap::new();
    headers.insert("x-compute-type", compute_type.parse().unwrap());
    headers.insert(
        "x-compute-time",
        total_time.as_secs_f64().to_string().parse().unwrap(),
    );
    headers.insert(
        "x-compute-characters",
        compute_characters.to_string().parse().unwrap(),
    );
    headers.insert(
        "x-total-time",
        total_time.as_millis().to_string().parse().unwrap(),
    );
    headers.insert(
        "x-validation-time",
        validation_time.as_millis().to_string().parse().unwrap(),
    );
    headers.insert(
        "x-queue-time",
        queue_time.as_millis().to_string().parse().unwrap(),
    );
    headers.insert(
        "x-inference-time",
        inference_time.as_millis().to_string().parse().unwrap(),
    );
    headers.insert(
        "x-time-per-token",
        time_per_token.as_millis().to_string().parse().unwrap(),
    );
    headers.insert("x-prompt-tokens", input_length.into());
    headers.insert(
        "x-generated-tokens",
        response.generated_text.generated_tokens.into(),
    );

    // Metrics
jixx's avatar
jixx committed
390
391
392
393
394
395
396
397
398
    metrics::counter!("tgi_request_success").increment(1);
    metrics::histogram!("tgi_request_duration").record(total_time.as_secs_f64());
    metrics::histogram!("tgi_request_validation_duration").record(validation_time.as_secs_f64());
    metrics::histogram!("tgi_request_queue_duration").record(queue_time.as_secs_f64());
    metrics::histogram!("tgi_request_inference_duration").record(inference_time.as_secs_f64());
    metrics::histogram!("tgi_request_mean_time_per_token_duration")
        .record(time_per_token.as_secs_f64());
    metrics::histogram!("tgi_request_generated_tokens")
        .record(response.generated_text.generated_tokens as f64);
jixx's avatar
init  
jixx committed
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460

    // Send response
    let mut output_text = response.generated_text.text;
    if let Some(prompt) = add_prompt {
        output_text = prompt + &output_text;
    }

    tracing::debug!("Output: {}", output_text);
    tracing::info!("Success");

    let response = GenerateResponse {
        generated_text: output_text,
        details,
    };
    Ok((headers, Json(response)))
}

/// Generate a stream of token using Server-Sent Events
#[utoipa::path(
post,
tag = "Text Generation Inference",
path = "/generate_stream",
request_body = GenerateRequest,
responses(
(status = 200, description = "Generated Text", body = StreamResponse,
content_type = "text/event-stream"),
(status = 424, description = "Generation Error", body = ErrorResponse,
example = json ! ({"error": "Request failed during generation"}),
content_type = "text/event-stream"),
(status = 429, description = "Model is overloaded", body = ErrorResponse,
example = json ! ({"error": "Model is overloaded"}),
content_type = "text/event-stream"),
(status = 422, description = "Input validation error", body = ErrorResponse,
example = json ! ({"error": "Input validation error"}),
content_type = "text/event-stream"),
(status = 500, description = "Incomplete generation", body = ErrorResponse,
example = json ! ({"error": "Incomplete generation"}),
content_type = "text/event-stream"),
)
)]
#[instrument(
skip_all,
fields(
parameters = ? req.parameters,
total_time,
validation_time,
queue_time,
inference_time,
time_per_token,
seed,
)
)]
async fn generate_stream(
    Extension(infer): Extension<Infer>,
    Extension(compute_type): Extension<ComputeType>,
    Json(req): Json<GenerateRequest>,
) -> (
    HeaderMap,
    Sse<impl Stream<Item = Result<Event, Infallible>>>,
) {
    let span = tracing::Span::current();
    let (headers, response_stream) =
jixx's avatar
jixx committed
461
462
463
464
465
466
467
468
469
470
471
472
473
        generate_stream_internal(infer, compute_type, Json(req), span).await;

    let response_stream = async_stream::stream! {
        let mut response_stream = Box::pin(response_stream);
        while let Some(raw_event) = response_stream.next().await {
            yield Ok(raw_event.map_or_else(Event::from, |token| {
                Event::default()
                    .json_data(token)
                    .unwrap_or_else(|e| InferError::StreamSerializationError(e.to_string()).into())
            }));
        }
    };

jixx's avatar
init  
jixx committed
474
475
476
477
478
479
480
481
482
    let sse = Sse::new(response_stream).keep_alive(KeepAlive::default());
    (headers, sse)
}

async fn generate_stream_internal(
    infer: Infer,
    ComputeType(compute_type): ComputeType,
    Json(req): Json<GenerateRequest>,
    span: tracing::Span,
jixx's avatar
jixx committed
483
484
485
486
) -> (
    HeaderMap,
    impl Stream<Item = Result<StreamResponse, InferError>>,
) {
jixx's avatar
init  
jixx committed
487
    let start_time = Instant::now();
jixx's avatar
jixx committed
488
    metrics::counter!("tgi_request_count").increment(1);
jixx's avatar
init  
jixx committed
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515

    tracing::debug!("Input: {}", req.inputs);

    let compute_characters = req.inputs.chars().count();

    let mut headers = HeaderMap::new();
    headers.insert("x-compute-type", compute_type.parse().unwrap());
    headers.insert(
        "x-compute-characters",
        compute_characters.to_string().parse().unwrap(),
    );
    headers.insert("X-Accel-Buffering", "no".parse().unwrap());

    let stream = async_stream::stream! {
        // Inference
        let mut end_reached = false;
        let mut error = false;

        let mut add_prompt = None;
        if req.parameters.return_full_text.unwrap_or(false) {
            add_prompt = Some(req.inputs.clone());
        }
        let details = req.parameters.details;

        let best_of = req.parameters.best_of.unwrap_or(1);
        if best_of != 1 {
            let err = InferError::from(ValidationError::BestOfStream);
jixx's avatar
jixx committed
516
            metrics::counter!("tgi_request_failure", "err" => "validation").increment(1);
jixx's avatar
init  
jixx committed
517
            tracing::error!("{err}");
jixx's avatar
jixx committed
518
            yield Err(err);
jixx's avatar
init  
jixx committed
519
520
        } else if req.parameters.decoder_input_details {
            let err = InferError::from(ValidationError::PrefillDetailsStream);
jixx's avatar
jixx committed
521
            metrics::counter!("tgi_request_failure", "err" => "validation").increment(1);
jixx's avatar
init  
jixx committed
522
            tracing::error!("{err}");
jixx's avatar
jixx committed
523
            yield Err(err);
jixx's avatar
init  
jixx committed
524
525
526
        } else {
            match infer.generate_stream(req).instrument(info_span!(parent: &span, "async_stream")).await {
                // Keep permit as long as generate_stream lives
jixx's avatar
jixx committed
527
                Ok((_permit, input_length, response_stream)) => {
jixx's avatar
init  
jixx committed
528
                    let mut index = 0;
jixx's avatar
jixx committed
529
                    let mut response_stream = Box::pin(response_stream);
jixx's avatar
init  
jixx committed
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
                    // Server-Sent Event stream
                    while let Some(response) = response_stream.next().await {
                        index += 1;
                        match response {
                            Ok(response) => {
                                match response {
                                    // Prefill is ignored
                                    InferStreamResponse::Prefill(_) => {}
                                    // Yield event for every new token
                                    InferStreamResponse::Intermediate{
                                        token,
                                        top_tokens,
                                    } => {
                                        tracing::debug!(parent: &span, "Token: {:?}", token);

                                        // StreamResponse
                                        let stream_token = StreamResponse {
                                            index,
                                            token,
                                            top_tokens,
                                            generated_text: None,
                                            details: None,
                                        };
jixx's avatar
jixx committed
553
                                        yield Ok(stream_token);
jixx's avatar
init  
jixx committed
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
                                    }
                                    // Yield event for last token and compute timings
                                    InferStreamResponse::End {
                                        token,
                                        generated_text,
                                        start,
                                        queued,
                                        top_tokens,
                                    } => {
                                        // Token details
                                        let details = match details {
                                            true => Some(StreamDetails {
                                                finish_reason: generated_text.finish_reason,
                                                generated_tokens: generated_text.generated_tokens,
                                                seed: generated_text.seed,
jixx's avatar
jixx committed
569
                                                input_length,
jixx's avatar
init  
jixx committed
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
                                            }),
                                            false => None,
                                        };

                                        // Timings
                                        let total_time = start_time.elapsed();
                                        let validation_time = queued - start_time;
                                        let queue_time = start - queued;
                                        let inference_time = Instant::now() - start;
                                        let time_per_token = inference_time / generated_text.generated_tokens;

                                        // Tracing metadata
                                        span.record("total_time", format!("{total_time:?}"));
                                        span.record("validation_time", format!("{validation_time:?}"));
                                        span.record("queue_time", format!("{queue_time:?}"));
                                        span.record("inference_time", format!("{inference_time:?}"));
                                        span.record("time_per_token", format!("{time_per_token:?}"));
                                        span.record("seed", format!("{:?}", generated_text.seed));

                                        // Metrics
jixx's avatar
jixx committed
590
591
592
593
594
595
596
                                        metrics::counter!("tgi_request_success").increment(1);
                                        metrics::histogram!("tgi_request_duration").record(total_time.as_secs_f64());
                                        metrics::histogram!("tgi_request_validation_duration").record(validation_time.as_secs_f64());
                                        metrics::histogram!("tgi_request_queue_duration").record(queue_time.as_secs_f64());
                                        metrics::histogram!("tgi_request_inference_duration").record(inference_time.as_secs_f64());
                                        metrics::histogram!("tgi_request_mean_time_per_token_duration").record(time_per_token.as_secs_f64());
                                        metrics::histogram!("tgi_request_generated_tokens").record(generated_text.generated_tokens as f64);
jixx's avatar
init  
jixx committed
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616

                                        // StreamResponse
                                        end_reached = true;

                                        let mut output_text = generated_text.text;
                                        if let Some(prompt) = add_prompt {
                                            output_text = prompt + &output_text;
                                        }

                                        tracing::debug!(parent: &span, "Output: {}", output_text);
                                        tracing::info!(parent: &span, "Success");

                                        let stream_token = StreamResponse {
                                            index,
                                            token,
                                            top_tokens,
                                            generated_text: Some(output_text),
                                            details
                                        };

jixx's avatar
jixx committed
617
                                        yield Ok(stream_token);
jixx's avatar
init  
jixx committed
618
619
620
621
622
623
624
                                        break;
                                    }
                                }
                            }
                            // yield error
                            Err(err) => {
                                error = true;
jixx's avatar
jixx committed
625
                                yield Err(err);
jixx's avatar
init  
jixx committed
626
627
628
629
630
631
632
633
                                break;
                            }
                        }
                    }
                },
                // yield error
                Err(err) => {
                    error = true;
jixx's avatar
jixx committed
634
                    yield Err(err);
jixx's avatar
init  
jixx committed
635
636
637
638
639
                }
            }
            // Check if generation reached the end
            // Skip if we already sent an error
            if !end_reached && !error {
jixx's avatar
jixx committed
640
641
                let err = InferError::IncompleteGenerationStream;
                metrics::counter!("tgi_request_failure", "err" => "incomplete").increment(1);
jixx's avatar
init  
jixx committed
642
                tracing::error!("{err}");
jixx's avatar
jixx committed
643
                yield Err(err);
jixx's avatar
init  
jixx committed
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
            }
        }
    };

    (headers, stream)
}

/// Generate tokens
#[utoipa::path(
post,
tag = "Text Generation Inference",
path = "/v1/completions",
request_body = CompletionRequest,
responses(
(status = 200, description = "Generated Chat Completion",
content(
jixx's avatar
jixx committed
660
661
("application/json" = CompletionFinal),
("text/event-stream" = Chunk),
jixx's avatar
init  
jixx committed
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
)),
(status = 424, description = "Generation Error", body = ErrorResponse,
example = json ! ({"error": "Request failed during generation"})),
(status = 429, description = "Model is overloaded", body = ErrorResponse,
example = json ! ({"error": "Model is overloaded"})),
(status = 422, description = "Input validation error", body = ErrorResponse,
example = json ! ({"error": "Input validation error"})),
(status = 500, description = "Incomplete generation", body = ErrorResponse,
example = json ! ({"error": "Incomplete generation"})),
)
)]
#[instrument(
skip_all,
fields(
// parameters = ? req.parameters,
total_time,
validation_time,
queue_time,
inference_time,
time_per_token,
seed,
)
)]
jixx's avatar
jixx committed
685
pub(crate) async fn completions(
jixx's avatar
init  
jixx committed
686
687
688
689
690
691
    Extension(infer): Extension<Infer>,
    Extension(compute_type): Extension<ComputeType>,
    Extension(info): Extension<Info>,
    Json(req): Json<CompletionRequest>,
) -> Result<Response, (StatusCode, Json<ErrorResponse>)> {
    let span = tracing::Span::current();
jixx's avatar
jixx committed
692
    metrics::counter!("tgi_request_count").increment(1);
jixx's avatar
init  
jixx committed
693
694

    let CompletionRequest {
jixx's avatar
jixx committed
695
        model,
jixx's avatar
init  
jixx committed
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
        max_tokens,
        seed,
        stop,
        stream,
        temperature,
        ..
    } = req;

    let max_new_tokens = max_tokens.or(Some(100));
    let stop = stop.unwrap_or_default();
    // enable greedy only when temperature is 0
    let (do_sample, temperature) = match temperature {
        Some(temperature) if temperature == 0.0 => (false, None),
        other => (true, other),
    };

    // if suffix is present throw an error
    if req.suffix.is_some() {
jixx's avatar
jixx committed
714
        metrics::counter!("tgi_request_failure", "err" => "validation").increment(1);
jixx's avatar
init  
jixx committed
715
716
717
718
719
720
721
722
723
724
725
        return Err((
            StatusCode::UNPROCESSABLE_ENTITY,
            Json(ErrorResponse {
                error: "Suffix is not supported and can be achieved by preprocessing the prompt."
                    .to_string(),
                error_type: "suffix not supported".to_string(),
            }),
        ));
    }

    if req.prompt.0.len() > info.max_client_batch_size {
jixx's avatar
jixx committed
726
        metrics::counter!("tgi_request_failure", "err" => "validation").increment(1);
jixx's avatar
init  
jixx committed
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
        return Err((
            StatusCode::UNPROCESSABLE_ENTITY,
            Json(ErrorResponse {
                error: format!(
                    "Number of prompts exceeds the maximum allowed batch size of {}",
                    info.max_client_batch_size
                ),
                error_type: "batch size exceeded".to_string(),
            }),
        ));
    }

    let generate_requests: Vec<GenerateRequest> = req
        .prompt
        .0
        .iter()
        .map(|prompt| GenerateRequest {
            inputs: prompt.to_string(),
jixx's avatar
jixx committed
745
            add_special_tokens: true,
jixx's avatar
init  
jixx committed
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
            parameters: GenerateParameters {
                best_of: None,
                temperature,
                repetition_penalty: req.repetition_penalty,
                frequency_penalty: req.frequency_penalty,
                top_k: None,
                top_p: req.top_p,
                typical_p: None,
                do_sample,
                max_new_tokens,
                return_full_text: None,
                stop: stop.clone(),
                truncate: None,
                watermark: false,
                details: true,
                decoder_input_details: !stream,
                seed,
                top_n_tokens: None,
                grammar: None,
jixx's avatar
jixx committed
765
                adapter_id: model.as_ref().filter(|m| *m != "tgi").map(String::from),
jixx's avatar
init  
jixx committed
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
            },
        })
        .collect();

    let mut x_compute_type = None;
    let mut x_compute_characters = 0u32;
    let mut x_accel_buffering = None;

    if stream {
        let mut response_streams = FuturesOrdered::new();
        for (index, generate_request) in generate_requests.into_iter().enumerate() {
            let model_id = info.model_id.clone();
            let system_fingerprint =
                format!("{}-{}", info.version, info.docker_label.unwrap_or("native"));
            let infer_clone = infer.clone();
            let compute_type_clone = compute_type.clone();
            let span_clone = span.clone();

            // Create a future for each generate_stream_internal call.
            let generate_future = async move {
                let (header_tx, header_rx) = oneshot::channel();
                let (sse_tx, sse_rx) = tokio::sync::mpsc::unbounded_channel();

                tokio::spawn(async move {
jixx's avatar
jixx committed
790
                    let (headers, response_stream) = generate_stream_internal(
jixx's avatar
init  
jixx committed
791
792
793
794
795
796
797
                        infer_clone.clone(),
                        compute_type_clone.clone(),
                        Json(generate_request),
                        span_clone.clone(),
                    )
                    .await;

jixx's avatar
jixx committed
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
                    let response_stream = async_stream::stream! {
                        let mut response_stream = Box::pin(response_stream);

                        while let Some(stream_token) = response_stream.next().await {
                            match stream_token {
                                Ok(stream_token) => {
                                    let event = Event::default();

                                    let current_time = std::time::SystemTime::now()
                                        .duration_since(std::time::UNIX_EPOCH)
                                        .unwrap_or_else(|_| std::time::Duration::from_secs(0))
                                        .as_secs();

                                    let message = match stream_token.details {
                                        Some(details) => {
                                            let completion_tokens = details.generated_tokens;
                                            let prompt_tokens = details.input_length;
                                            let total_tokens = prompt_tokens + completion_tokens;

                                            Completion::Final(CompletionFinal {
                                                id: String::new(),
                                                created: current_time,
                                                model: model_id.clone(),
                                                system_fingerprint: system_fingerprint.clone(),
                                                choices: vec![CompletionComplete {
                                                    finish_reason: details.finish_reason.to_string(),
                                                    index: index as u32,
                                                    logprobs: None,
                                                    text: stream_token.token.text,
                                                }],
                                                usage: Usage {
                                                    prompt_tokens,
                                                    completion_tokens,
                                                    total_tokens,
                                                },
                                            })
                                        }
                                        None => Completion::Chunk(Chunk {
                                            id: String::new(),
                                            created: current_time,
                                            choices: vec![CompletionComplete {
                                                finish_reason: String::new(),
                                                index: index as u32,
                                                logprobs: None,
                                                text: stream_token.token.text,
                                            }],
                                            model: model_id.clone(),
                                            system_fingerprint: system_fingerprint.clone(),
                                        }),
                                    };

                                    let event = event
                                        .json_data(message)
                                        .unwrap_or_else(|_e| Event::default());

                                    yield Ok(event);
                                }
                                Err(err) => yield Ok(Event::from(err)),
                            }
                        }
                    };

jixx's avatar
init  
jixx committed
860
                    // send and dont wait for response
jixx's avatar
jixx committed
861
                    let _ = header_tx.send(headers);
jixx's avatar
init  
jixx committed
862
863

                    // pin an emit messages to the sse_tx
jixx's avatar
jixx committed
864
                    let mut sse = Box::pin(response_stream);
jixx's avatar
init  
jixx committed
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
                    while let Some(event) = sse.next().await {
                        if sse_tx.send(event).is_err() {
                            tracing::error!("Failed to send event. Receiver dropped.");
                            break;
                        }
                    }
                });

                (header_rx, sse_rx)
            };
            response_streams.push_back(generate_future);
        }

        let mut all_rxs = vec![];

        while let Some((header_rx, sse_rx)) = response_streams.next().await {
            all_rxs.push(sse_rx);

            // get the headers from the first response of each stream
            let headers = header_rx.await.map_err(|e| {
                tracing::error!("Failed to get headers: {:?}", e);
                (
                    StatusCode::INTERNAL_SERVER_ERROR,
                    Json(ErrorResponse {
                        error: "Failed to get headers".to_string(),
                        error_type: "headers".to_string(),
                    }),
                )
            })?;
            if x_compute_type.is_none() {
                x_compute_type = headers
                    .get("x-compute-type")
                    .and_then(|v| v.to_str().ok())
                    .map(|v| v.to_string());

                x_accel_buffering = headers
                    .get("x-accel-buffering")
                    .and_then(|v| v.to_str().ok())
                    .map(|v| v.to_string());
            }
            x_compute_characters += headers
                .get("x-compute-characters")
                .and_then(|v| v.to_str().ok())
                .and_then(|v| v.parse().ok())
                .unwrap_or(0);
        }

        let mut headers = HeaderMap::new();
        if let Some(x_compute_type) = x_compute_type {
            headers.insert("x-compute-type", x_compute_type.parse().unwrap());
        }
        headers.insert("x-compute-characters", x_compute_characters.into());
        if let Some(x_accel_buffering) = x_accel_buffering {
            headers.insert("x-accel-buffering", x_accel_buffering.parse().unwrap());
        }

        // now sink the sse streams into a single stream and remove the ones that are done
        let stream: AsyncStream<Result<Event, Infallible>, _> = async_stream::stream! {
            loop {
                let mut i = 0;
                while i < all_rxs.len() {
                    let rx = &mut all_rxs[i];
                    select! {
                        Some(event) = rx.recv() => {
                            yield event;
                        }
                        else => {
                            all_rxs.remove(i);
                            continue; // skip the increment to handle the next element at the same index
                        }
                    }
                    i += 1; // only increment when no element was removed
                }

                if all_rxs.is_empty() {
                    break;
                }
            }
        };

jixx's avatar
jixx committed
945
946
947
948
        let stream = stream.chain(futures::stream::once(async {
            Ok(Event::default().data("[DONE]"))
        }));

jixx's avatar
init  
jixx committed
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
        let sse = Sse::new(stream).keep_alive(KeepAlive::default());
        Ok((headers, sse).into_response())
    } else {
        let current_time = std::time::SystemTime::now()
            .duration_since(std::time::UNIX_EPOCH)
            .unwrap_or_else(|_| std::time::Duration::from_secs(0))
            .as_secs();

        let responses = FuturesUnordered::new();
        for (index, generate_request) in generate_requests.into_iter().enumerate() {
            let infer_clone = infer.clone();
            let compute_type_clone = compute_type.clone();
            let span_clone = span.clone();
            let response_future = async move {
                let result = generate_internal(
                    Extension(infer_clone),
                    compute_type_clone,
                    Json(generate_request),
                    span_clone,
                )
                .await;
                result.map(|(headers, generation)| (index, headers, generation))
            };
            responses.push(response_future);
        }
        let generate_responses = responses.try_collect::<Vec<_>>().await?;

        let mut prompt_tokens = 0u32;
        let mut completion_tokens = 0u32;
        let mut total_tokens = 0u32;

        let mut x_compute_time = 0u32;
        let mut x_total_time = 0u32;
        let mut x_validation_time = 0u32;
        let mut x_queue_time = 0u32;
        let mut x_inference_time = 0u32;
        let mut x_time_per_token = 0u32;
        let mut x_prompt_tokens = 0u32;
        let mut x_generated_tokens = 0u32;

        let choices = generate_responses
            .into_iter()
            .map(|(index, headers, Json(generation))| {
                let details = generation.details.ok_or((
                    // this should never happen but handle if details are missing unexpectedly
                    StatusCode::INTERNAL_SERVER_ERROR,
                    Json(ErrorResponse {
                        error: "No details in generation".to_string(),
                        error_type: "no details".to_string(),
                    }),
                ))?;

                if x_compute_type.is_none() {
                    x_compute_type = headers
                        .get("x-compute-type")
                        .and_then(|v| v.to_str().ok())
                        .map(|v| v.to_string());
                }

                // accumulate headers and usage from each response
                x_compute_time += headers
                    .get("x-compute-time")
                    .and_then(|v| v.to_str().ok()?.parse().ok())
                    .unwrap_or(0);
                x_compute_characters += headers
                    .get("x-compute-characters")
                    .and_then(|v| v.to_str().ok()?.parse().ok())
                    .unwrap_or(0);
                x_total_time += headers
                    .get("x-total-time")
                    .and_then(|v| v.to_str().ok()?.parse().ok())
                    .unwrap_or(0);
                x_validation_time += headers
                    .get("x-validation-time")
                    .and_then(|v| v.to_str().ok()?.parse().ok())
                    .unwrap_or(0);
                x_queue_time += headers
                    .get("x-queue-time")
                    .and_then(|v| v.to_str().ok()?.parse().ok())
                    .unwrap_or(0);
                x_inference_time += headers
                    .get("x-inference-time")
                    .and_then(|v| v.to_str().ok()?.parse().ok())
                    .unwrap_or(0);
                x_time_per_token += headers
                    .get("x-time-per-token")
                    .and_then(|v| v.to_str().ok()?.parse().ok())
                    .unwrap_or(0);
                x_prompt_tokens += headers
                    .get("x-prompt-tokens")
                    .and_then(|v| v.to_str().ok()?.parse().ok())
                    .unwrap_or(0);
                x_generated_tokens += headers
                    .get("x-generated-tokens")
                    .and_then(|v| v.to_str().ok()?.parse().ok())
                    .unwrap_or(0);

                prompt_tokens += details.prefill.len() as u32;
                completion_tokens += details.generated_tokens;
                total_tokens += details.prefill.len() as u32 + details.generated_tokens;

                Ok(CompletionComplete {
jixx's avatar
jixx committed
1051
                    finish_reason: details.finish_reason.format(true),
jixx's avatar
init  
jixx committed
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
                    index: index as u32,
                    logprobs: None,
                    text: generation.generated_text,
                })
            })
            .collect::<Result<Vec<_>, _>>()
            .map_err(|(status, Json(err))| (status, Json(err)))?;

        let response = Completion::Final(CompletionFinal {
            id: "".to_string(),
            created: current_time,
            model: info.model_id.clone(),
            system_fingerprint: format!(
                "{}-{}",
                info.version,
                info.docker_label.unwrap_or("native")
            ),
            choices,
            usage: Usage {
                prompt_tokens,
                completion_tokens,
                total_tokens,
            },
        });

        // headers similar to `generate` but aggregated
        let mut headers = HeaderMap::new();
        if let Some(x_compute_type) = x_compute_type {
            headers.insert("x-compute-type", x_compute_type.parse().unwrap());
        }
        headers.insert("x-compute-characters", x_compute_characters.into());
        headers.insert("x-total-time", x_total_time.into());
        headers.insert("x-validation-time", x_validation_time.into());
        headers.insert("x-queue-time", x_queue_time.into());
        headers.insert("x-inference-time", x_inference_time.into());
        headers.insert("x-time-per-token", x_time_per_token.into());
        headers.insert("x-prompt-tokens", x_prompt_tokens.into());
        headers.insert("x-generated-tokens", x_generated_tokens.into());
        if let Some(x_accel_buffering) = x_accel_buffering {
            headers.insert("x-accel-buffering", x_accel_buffering.parse().unwrap());
        }
        Ok((headers, Json(response)).into_response())
    }
}

jixx's avatar
jixx committed
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
enum StreamState {
    Buffering,
    BufferTrailing,
    Content { skip_close_quote: bool },
}

/// Convert a StreamResponse into an Event to be sent over SSE
fn create_event_from_stream_token(
    stream_token: &StreamResponse,
    logprobs: bool,
    stream_options: Option<StreamOptions>,
    inner_using_tools: bool,
    system_fingerprint: String,
    model_id: String,
) -> Event {
    let event = Event::default();
    let current_time = std::time::SystemTime::now()
        .duration_since(std::time::UNIX_EPOCH)
        .unwrap_or_else(|_| std::time::Duration::from_secs(0))
        .as_secs();

    let logprobs = logprobs.then(|| {
        ChatCompletionLogprobs::from((stream_token.token.clone(), stream_token.top_tokens.clone()))
    });

    // replace the content with the tool calls if grammar is present
    let (content, tool_calls) = if inner_using_tools {
        (None, Some(vec![stream_token.token.text.clone()]))
    } else {
        let content = if !stream_token.token.special {
            Some(stream_token.token.text.clone())
        } else {
            None
        };

        (content, None)
    };

    let (usage, finish_reason) = match &stream_token.details {
        Some(details) => {
            let usage = if stream_options
                .as_ref()
                .map(|s| s.include_usage)
                .unwrap_or(false)
            {
                let completion_tokens = details.generated_tokens;
                let prompt_tokens = details.input_length;
                let total_tokens = prompt_tokens + completion_tokens;
                Some(Usage {
                    completion_tokens,
                    prompt_tokens,
                    total_tokens,
                })
            } else {
                None
            };
            (usage, Some(details.finish_reason.format(true)))
        }
        None => (None, None),
    };

    let chat_complete = CompletionType::ChatCompletionChunk(ChatCompletionChunk::new(
        model_id.clone(),
        system_fingerprint.clone(),
        content,
        tool_calls,
        current_time,
        logprobs,
        finish_reason,
        usage,
    ));

    event.json_data(chat_complete).unwrap_or_else(|e| {
        println!("Failed to serialize ChatCompletionChunk: {:?}", e);
        Event::default()
    })
}

jixx's avatar
init  
jixx committed
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
/// Generate tokens
#[utoipa::path(
post,
tag = "Text Generation Inference",
path = "/v1/chat/completions",
request_body = ChatRequest,
responses(
(status = 200, description = "Generated Chat Completion",
content(
("application/json" = ChatCompletion),
("text/event-stream" = ChatCompletionChunk),
)),
(status = 424, description = "Generation Error", body = ErrorResponse,
example = json ! ({"error": "Request failed during generation"})),
(status = 429, description = "Model is overloaded", body = ErrorResponse,
example = json ! ({"error": "Model is overloaded"})),
(status = 422, description = "Input validation error", body = ErrorResponse,
example = json ! ({"error": "Input validation error"})),
(status = 500, description = "Incomplete generation", body = ErrorResponse,
example = json ! ({"error": "Incomplete generation"})),
)
)]
#[instrument(
skip_all,
fields(
// parameters = ? req.parameters,
total_time,
validation_time,
queue_time,
inference_time,
time_per_token,
seed,
)
)]
jixx's avatar
jixx committed
1209
pub(crate) async fn chat_completions(
jixx's avatar
init  
jixx committed
1210
1211
1212
    Extension(infer): Extension<Infer>,
    Extension(compute_type): Extension<ComputeType>,
    Extension(info): Extension<Info>,
jixx's avatar
jixx committed
1213
    Json(chat): Json<ChatRequest>,
jixx's avatar
init  
jixx committed
1214
1215
) -> Result<Response, (StatusCode, Json<ErrorResponse>)> {
    let span = tracing::Span::current();
jixx's avatar
jixx committed
1216
    metrics::counter!("tgi_request_count").increment(1);
jixx's avatar
init  
jixx committed
1217
1218
    let ChatRequest {
        stream,
jixx's avatar
jixx committed
1219
1220
        stream_options,
        logprobs,
jixx's avatar
init  
jixx committed
1221
        ..
jixx's avatar
jixx committed
1222
1223
1224
    } = chat.clone();
    let (generate_request, using_tools): (GenerateRequest, bool) =
        chat.try_into_generate(&infer)?;
jixx's avatar
init  
jixx committed
1225

jixx's avatar
jixx committed
1226
    let logprobs = logprobs.unwrap_or_default();
jixx's avatar
init  
jixx committed
1227
1228
1229
1230
1231
1232

    // static values that will be returned in all cases
    let model_id = info.model_id.clone();
    let system_fingerprint = format!("{}-{}", info.version, info.docker_label.unwrap_or("native"));
    // switch on stream
    if stream {
jixx's avatar
jixx committed
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
        let (headers, response_stream) =
            generate_stream_internal(infer, compute_type, Json(generate_request), span).await;

        // regex to match any function name
        let function_regex = match Regex::new(r#"\{"function":\{"_name":"([^"]+)""#) {
            Ok(regex) => regex,
            Err(e) => {
                return Err((
                    StatusCode::INTERNAL_SERVER_ERROR,
                    Json(ErrorResponse {
                        error: format!("Failed to compile regex: {}", e),
                        error_type: "regex".to_string(),
                    }),
                ))
            }
        };
jixx's avatar
init  
jixx committed
1249

jixx's avatar
jixx committed
1250
1251
1252
1253
1254
1255
        let response_stream = async_stream::stream! {
            let mut response_stream = Box::pin(response_stream);
            let mut buffer = Vec::new();
            let mut json_buffer = String::new();
            let mut state = if using_tools {
                StreamState::Buffering
jixx's avatar
init  
jixx committed
1256
            } else {
jixx's avatar
jixx committed
1257
1258
1259
                StreamState::Content {
                    skip_close_quote: false,
                }
jixx's avatar
init  
jixx committed
1260
            };
jixx's avatar
jixx committed
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
            let mut response_as_tool = using_tools;
            while let Some(result) = response_stream.next().await {
                if let Ok(stream_token) = result {
                    let token_text = &stream_token.token.text.clone();
                    match state {
                        StreamState::Buffering => {
                            json_buffer.push_str(&token_text.replace(" ", ""));
                            buffer.push(stream_token);
                            if let Some(captures) = function_regex.captures(&json_buffer) {
                                let function_name = captures[1].to_string();
                                if function_name == "no_tool" {
                                    state = StreamState::BufferTrailing;
                                    response_as_tool = false;
                                    buffer.clear();
                                    json_buffer.clear();
                                } else {
                                    state = StreamState::Content {
                                        skip_close_quote: false,
                                    };
                                    // send all the buffered messages
                                    for stream_token in &buffer {
                                        let event = create_event_from_stream_token(
                                            stream_token,
                                            logprobs,
                                            stream_options.clone(),
                                            response_as_tool,
                                            system_fingerprint.clone(),
                                            model_id.clone(),
                                        );
                                        yield Ok::<Event, Infallible>(event);
                                    }
                                }
                            }
                        }
                        // if we skipped sending the buffer we need to avoid sending the following json key and quotes
                        StreamState::BufferTrailing => {
                            let infix_text = "\"content\":\"";
                            json_buffer.push_str(&token_text.replace(" ", ""));
                            // keep capturing until we find the infix text
                            match json_buffer.find(infix_text) {
                                Some(content_key_index) => {
                                    json_buffer =
                                        json_buffer[content_key_index + infix_text.len()..].to_string();
                                }
                                None => {
                                    continue;
                                }
                            }
                            // if there is leftover text after removing the infix text, we need to send it
                            if !json_buffer.is_empty() {
                                let event = Event::default();
                                let current_time = std::time::SystemTime::now()
                                    .duration_since(std::time::UNIX_EPOCH)
                                    .unwrap_or_else(|_| std::time::Duration::from_secs(0))
                                    .as_secs();
                                let chat_complete =
                                    CompletionType::ChatCompletionChunk(ChatCompletionChunk::new(
                                        model_id.clone(),
                                        system_fingerprint.clone(),
                                        Some(json_buffer.clone()),
                                        None,
                                        current_time,
                                        None,
                                        None,
                                        None,
                                    ));
                                yield Ok(event.json_data(chat_complete).unwrap_or_else(|e| {
                                    InferError::StreamSerializationError(e.to_string()).into()
                                }));
                            }
                            // cleanup the buffers
                            buffer.clear();
                            json_buffer.clear();
                            state = StreamState::Content {
                                skip_close_quote: true,
                            };
                        }
                        StreamState::Content { skip_close_quote } => {
                            if skip_close_quote && token_text.contains('"') {
                                break;
                            }
jixx's avatar
init  
jixx committed
1342

jixx's avatar
jixx committed
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
                            // send the content
                            let event = create_event_from_stream_token(
                                &stream_token,
                                logprobs,
                                stream_options.clone(),
                                response_as_tool,
                                system_fingerprint.clone(),
                                model_id.clone(),
                            );

                            yield Ok::<Event, Infallible>(event);
                        }
                    }
                }
            }
            yield Ok::<Event, Infallible>(Event::default().data("[DONE]"));
jixx's avatar
init  
jixx committed
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
        };

        let sse = Sse::new(response_stream).keep_alive(KeepAlive::default());
        Ok((headers, sse).into_response())
    } else {
        let (headers, Json(generation)) =
            generate_internal(Extension(infer), compute_type, Json(generate_request), span).await?;

        let current_time = std::time::SystemTime::now()
            .duration_since(std::time::UNIX_EPOCH)
            .unwrap_or_else(|_| std::time::Duration::from_secs(0))
            .as_secs();

jixx's avatar
jixx committed
1372
        let (tool_calls, output) = if using_tools {
jixx's avatar
init  
jixx committed
1373
1374
            let gen_text_value: Value =
                serde_json::from_str(&generation.generated_text).map_err(|e| {
jixx's avatar
jixx committed
1375
1376
1377
1378
                    InferError::ToolError(format!(
                        "Failed to parse generated text: {} {:?}",
                        e, generation.generated_text
                    ))
jixx's avatar
init  
jixx committed
1379
                })?;
jixx's avatar
jixx committed
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
            let function = gen_text_value.get("function").ok_or(InferError::ToolError(
                "No function found in generated text".to_string(),
            ))?;

            let name = function
                .get("_name")
                .and_then(Value::as_str)
                .ok_or(InferError::ToolError(
                    "No _name found in generated text".to_string(),
                ))?
                .to_string();

            let mut arguments = function.clone();
            if let Value::Object(ref mut props) = arguments {
                props.remove("_name");
            }
            match name.as_str() {
                "no_tool" => {
                    // parse the content message
                    let content_message = arguments
                        .get("content")
                        .and_then(Value::as_str)
                        .ok_or_else(|| {
                            InferError::ToolError(
                                "No `content` found in generated text".to_string(),
                            )
                        })?
                        .to_string();
                    (None, Some(content_message))
                }
                _ => {
                    let tool_calls = vec![ToolCall {
                        id: "0".to_string(),
                        r#type: "function".to_string(),
                        function: FunctionDefinition {
                            description: None,
                            name,
                            arguments,
                        },
                    }];
                    (Some(tool_calls), None)
                }
            }
jixx's avatar
init  
jixx committed
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
        } else {
            (None, Some(generation.generated_text))
        };
        // build the complete response object with the full text
        let response = CompletionType::ChatCompletion(ChatCompletion::new(
            model_id,
            system_fingerprint,
            output,
            current_time,
            generation.details.unwrap(),
            logprobs,
            tool_calls,
        ));

        // wrap generation inside a Vec to match api-inference
        Ok((headers, Json(response)).into_response())
    }
}

/// Tokenize inputs
#[utoipa::path(
post,
tag = "Text Generation Inference",
path = "/tokenize",
request_body = GenerateRequest,
responses(
(status = 200, description = "Tokenized ids", body = TokenizeResponse),
(status = 404, description = "No tokenizer found", body = ErrorResponse,
example = json ! ({"error": "No fast tokenizer available"})),
)
)]
#[instrument(skip_all)]
async fn tokenize(
    Extension(infer): Extension<Infer>,
    Json(req): Json<GenerateRequest>,
) -> Result<Json<TokenizeResponse>, (StatusCode, Json<ErrorResponse>)> {
    let input = req.inputs.clone();
    let encoding = infer.tokenize(req).await?;
    if let Some(encoding) = encoding {
        let tokens: Vec<SimpleToken> = encoding
            .get_ids()
            .iter()
            .zip(encoding.get_offsets())
            .map(|(&id, &(start, stop))| {
jixx's avatar
jixx committed
1467
1468
1469
1470
1471
                let text = input
                    .chars()
                    .skip(start)
                    .take(stop - start)
                    .collect::<String>();
jixx's avatar
init  
jixx committed
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
                SimpleToken {
                    id,
                    text,
                    start,
                    stop,
                }
            })
            .collect();
        Ok(Json(TokenizeResponse(tokens)))
    } else {
        Err((
            StatusCode::NOT_FOUND,
            Json(ErrorResponse {
                error: "No fast tokenizer or tokenizer.json for this model".to_string(),
                error_type: "no fast tokenizer".to_string(),
            }),
        ))
    }
}

/// Prometheus metrics scrape endpoint
#[utoipa::path(
    get,
    tag = "Text Generation Inference",
    path = "/metrics",
    responses((status = 200, description = "Prometheus Metrics", body = String))
)]
async fn metrics(prom_handle: Extension<PrometheusHandle>) -> String {
    prom_handle.render()
}

#[derive(Clone, Debug)]
pub(crate) struct ComputeType(String);

jixx's avatar
jixx committed
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
// OpenAPI documentation
#[derive(OpenApi)]
#[openapi(
paths(
health,
get_model_info,
compat_generate,
generate,
generate_stream,
chat_completions,
completions,
tokenize,
metrics,
openai_get_model_info,
sagemaker_compatibility,
),
components(
schemas(
Info,
CompatGenerateRequest,
SagemakerRequest,
GenerateRequest,
GrammarType,
ChatRequest,
Message,
MessageContent,
MessageChunk,
Url,
FunctionName,
OutputMessage,
TextMessage,
ToolCallMessage,
ToolCallDelta,
ChatCompletionComplete,
ChatCompletionChoice,
ChatCompletionDelta,
ChatCompletionChunk,
ChatCompletionLogprob,
ChatCompletionLogprobs,
ChatCompletionTopLogprob,
ChatCompletion,
CompletionRequest,
CompletionComplete,
SagemakerResponse,
SagemakerStreamResponse,
Chunk,
Completion,
CompletionFinal,
Prompt,
GenerateParameters,
PrefillToken,
Token,
GenerateResponse,
TokenizeResponse,
SimpleToken,
BestOfSequence,
Details,
FinishReason,
StreamResponse,
StreamDetails,
ErrorResponse,
GrammarType,
Usage,
StreamOptions,
DeltaToolCall,
ToolType,
Tool,
ToolCall,
Function,
FunctionDefinition,
ToolChoice,
ModelInfo,
)
),
tags(
(name = "Text Generation Inference", description = "Hugging Face Text Generation Inference API")
),
info(
title = "Text Generation Inference",
license(
name = "Apache 2.0",
url = "https://www.apache.org/licenses/LICENSE-2.0"
)
)
)]
pub struct ApiDoc;

pub fn schema() -> ApiDoc {
    ApiDoc
}

jixx's avatar
init  
jixx committed
1597
1598
1599
/// Serving method
#[allow(clippy::too_many_arguments)]
pub async fn run(
jixx's avatar
jixx committed
1600
    backend: impl Backend + Send + Sync + 'static,
jixx's avatar
init  
jixx committed
1601
1602
1603
1604
1605
1606
1607
    max_concurrent_requests: usize,
    max_best_of: usize,
    max_stop_sequences: usize,
    max_top_n_tokens: u32,
    max_input_tokens: usize,
    max_total_tokens: usize,
    validation_workers: usize,
jixx's avatar
jixx committed
1608
1609
1610
1611
1612
1613
1614
1615
    api_key: Option<String>,
    tokenizer_name: String,
    tokenizer_config_path: Option<String>,
    revision: Option<String>,
    trust_remote_code: bool,
    hostname: String,
    port: u16,
    cors_allow_origin: Option<Vec<String>>,
jixx's avatar
init  
jixx committed
1616
1617
1618
    ngrok: bool,
    _ngrok_authtoken: Option<String>,
    _ngrok_edge: Option<String>,
jixx's avatar
jixx committed
1619
    disable_grammar_support: bool,
jixx's avatar
init  
jixx committed
1620
    max_client_batch_size: usize,
jixx's avatar
jixx committed
1621
    usage_stats_level: usage_stats::UsageStatsLevel,
jixx's avatar
init  
jixx committed
1622
) -> Result<(), WebServerError> {
jixx's avatar
jixx committed
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
    // CORS allowed origins
    // map to go inside the option and then map to parse from String to HeaderValue
    // Finally, convert to AllowOrigin
    let allow_origin: Option<AllowOrigin> = cors_allow_origin.map(|cors_allow_origin| {
        AllowOrigin::list(
            cors_allow_origin
                .iter()
                .map(|origin| origin.parse::<HeaderValue>().unwrap()),
        )
    });
jixx's avatar
init  
jixx committed
1633

jixx's avatar
jixx committed
1634
1635
1636
1637
    // Parse Huggingface hub token
    let authorization_token = std::env::var("HF_TOKEN")
        .or_else(|_| std::env::var("HUGGING_FACE_HUB_TOKEN"))
        .ok();
jixx's avatar
init  
jixx committed
1638

jixx's avatar
jixx committed
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
    // Tokenizer instance
    // This will only be used to validate payloads
    let local_path = Path::new(&tokenizer_name);

    // Shared API builder initialization
    let api_builder = || {
        let mut builder = ApiBuilder::new()
            .with_progress(false)
            .with_token(authorization_token);

        if let Ok(cache_dir) = std::env::var("HUGGINGFACE_HUB_CACHE") {
            builder = builder.with_cache_dir(cache_dir.into());
        }

        builder
    };

    // Decide if we need to use the API based on the revision and local path
    let use_api = revision.is_some() || !local_path.exists() || !local_path.is_dir();
jixx's avatar
init  
jixx committed
1658

jixx's avatar
jixx committed
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
    // Initialize API if needed
    #[derive(Clone)]
    enum Type {
        Api(Api),
        Cache(Cache),
        None,
    }
    let api = if use_api {
        if std::env::var("HF_HUB_OFFLINE") == Ok("1".to_string()) {
            let cache = std::env::var("HUGGINGFACE_HUB_CACHE")
                .map_err(|_| ())
                .map(|cache_dir| Cache::new(cache_dir.into()))
                .unwrap_or_else(|_| Cache::default());
            tracing::warn!("Offline mode active using cache defaults");
            Type::Cache(cache)
        } else {
            tracing::info!("Using the Hugging Face API");
            match api_builder().build() {
                Ok(api) => Type::Api(api),
                Err(_) => {
                    tracing::warn!("Unable to build the Hugging Face API");
                    Type::None
jixx's avatar
init  
jixx committed
1681
1682
                }
            }
jixx's avatar
jixx committed
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
        }
    } else {
        Type::None
    };

    // Load tokenizer and model info
    let (
        tokenizer_filename,
        config_filename,
        tokenizer_config_filename,
        preprocessor_config_filename,
        processor_config_filename,
        model_info,
    ) = match api {
        Type::None => (
            Some(local_path.join("tokenizer.json")),
            Some(local_path.join("config.json")),
            Some(local_path.join("tokenizer_config.json")),
            Some(local_path.join("preprocessor_config.json")),
            Some(local_path.join("processor_config.json")),
            None,
        ),
        Type::Api(api) => {
            let api_repo = api.repo(Repo::with_revision(
                tokenizer_name.to_string(),
                RepoType::Model,
                revision.clone().unwrap_or_else(|| "main".to_string()),
            ));

            let tokenizer_filename = match api_repo.get("tokenizer.json").await {
                Ok(tokenizer_filename) => Some(tokenizer_filename),
                Err(_) => get_base_tokenizer(&api, &api_repo).await,
            };
            let config_filename = api_repo.get("config.json").await.ok();
            let tokenizer_config_filename = api_repo.get("tokenizer_config.json").await.ok();
            let preprocessor_config_filename = api_repo.get("preprocessor_config.json").await.ok();
            let processor_config_filename = api_repo.get("processor_config.json").await.ok();

            let model_info = if let Some(model_info) = get_hub_model_info(&api_repo).await {
                Some(model_info)
            } else {
                tracing::warn!("Could not retrieve model info from the Hugging Face hub.");
                None
            };
            (
                tokenizer_filename,
                config_filename,
                tokenizer_config_filename,
                preprocessor_config_filename,
                processor_config_filename,
                model_info,
            )
        }
        Type::Cache(cache) => {
            let repo = cache.repo(Repo::with_revision(
                tokenizer_name.to_string(),
                RepoType::Model,
                revision.clone().unwrap_or_else(|| "main".to_string()),
            ));
            (
                repo.get("tokenizer.json"),
                repo.get("config.json"),
                repo.get("tokenizer_config.json"),
                repo.get("preprocessor_config.json"),
                repo.get("processor_config.json"),
                None,
            )
        }
    };

    // Read the JSON contents of the file as an instance of 'HubTokenizerConfig'.
    let tokenizer_config: Option<HubTokenizerConfig> = if let Some(filename) = tokenizer_config_path
    {
        HubTokenizerConfig::from_file(filename)
    } else {
        tokenizer_config_filename.and_then(HubTokenizerConfig::from_file)
    };
    let tokenizer_config = tokenizer_config.unwrap_or_else(|| {
        tracing::warn!("Could not find tokenizer config locally and no API specified");
        HubTokenizerConfig::default()
    });

    let tokenizer: Option<Tokenizer> = tokenizer_filename.and_then(|filename| {
        use pyo3::prelude::*;
        let convert = pyo3::Python::with_gil(|py| -> PyResult<()> {
            let transformers = py.import_bound("transformers")?;
            let auto = transformers.getattr("AutoTokenizer")?;
            let from_pretrained = auto.getattr("from_pretrained")?;
            let args = (tokenizer_name.to_string(),);
            let kwargs = [
                (
                    "revision",
                    (revision.clone().unwrap_or_else(|| "main".to_string())).into_py(py),
                ),
                ("trust_remote_code", trust_remote_code.into_py(py)),
            ]
            .into_py_dict_bound(py);
            let tokenizer = from_pretrained.call(args, Some(&kwargs))?;
            let save = tokenizer.getattr("save_pretrained")?;
            let args = ("out".to_string(),);
            save.call1(args)?;
            Ok(())
        })
        .inspect_err(|err| {
            tracing::error!("Failed to import python tokenizer {err}");
        });
        let filename = if convert.is_ok() {
            // If we have correctly loaded and resaved with transformers
            // We might have modified the tokenizer.json according to transformers
            "out/tokenizer.json".into()
        } else {
            filename
jixx's avatar
init  
jixx committed
1795
        };
jixx's avatar
jixx committed
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
        Tokenizer::from_file(filename).ok()
    });

    let config: Option<Config> = config_filename.and_then(|filename| {
        std::fs::read_to_string(filename)
            .ok()
            .as_ref()
            .and_then(|c| {
                let config: Result<Config, _> = serde_json::from_str(c);
                if let Err(err) = &config {
                    tracing::warn!("Could not parse config {err:?}");
                }
                config.ok()
            })
    });
    let model_info = model_info.unwrap_or_else(|| HubModelInfo {
        model_id: tokenizer_name.to_string(),
        sha: None,
        pipeline_tag: None,
    });

    let processor_config = processor_config_filename
        .and_then(HubProcessorConfig::from_file)
        .unwrap_or_default();

    let preprocessor_config: Option<HubPreprocessorConfig> =
        preprocessor_config_filename.and_then(HubPreprocessorConfig::from_file);

    tracing::info!("Using config {config:?}");
    if tokenizer.is_none() {
        tracing::warn!("Could not find a fast tokenizer implementation for {tokenizer_name}");
        tracing::warn!("Rust input length validation and truncation is disabled");
    }
jixx's avatar
init  
jixx committed
1829

jixx's avatar
jixx committed
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
    // Only send usage stats when TGI is run in container and the function returns Some
    let is_container = matches!(usage_stats::is_container(), Ok(true));
    let user_agent = match (usage_stats_level, is_container) {
        (usage_stats::UsageStatsLevel::On | usage_stats::UsageStatsLevel::NoStack, true) => {
            let reduced_args = usage_stats::Args::new(
                config.clone(),
                tokenizer_config.tokenizer_class.clone(),
                max_concurrent_requests,
                max_best_of,
                max_stop_sequences,
                max_top_n_tokens,
                max_input_tokens,
                max_total_tokens,
                // waiting_served_ratio,
                // max_batch_prefill_tokens,
                // max_batch_total_tokens,
                // max_waiting_tokens,
                // max_batch_size,
                revision.clone(),
                validation_workers,
                disable_grammar_support,
                max_client_batch_size,
                usage_stats_level,
            );
            Some(usage_stats::UserAgent::new(reduced_args))
        }
        _ => None,
    };

    if let Some(ref ua) = user_agent {
        let start_event =
            usage_stats::UsageStatsEvent::new(ua.clone(), usage_stats::EventType::Start, None);
        tokio::spawn(async move {
            start_event.send().await;
        });
    };
    let compat_return_full_text = match &model_info.pipeline_tag {
        None => {
            tracing::warn!("no pipeline tag found for model {tokenizer_name}");
            true
        }
        Some(pipeline_tag) => pipeline_tag.as_str() == "text-generation",
    };
    let result = start(
        backend,
        max_concurrent_requests,
        max_best_of,
        max_stop_sequences,
        max_top_n_tokens,
        max_input_tokens,
        max_total_tokens,
        validation_workers,
        api_key,
        config,
        (tokenizer, tokenizer_config),
        (preprocessor_config, processor_config),
        hostname,
        port,
        ngrok,
        _ngrok_authtoken,
        _ngrok_edge,
        disable_grammar_support,
        max_client_batch_size,
        model_info,
        compat_return_full_text,
        allow_origin,
    )
    .await;

    if let Some(ua) = user_agent {
        match result {
            Ok(_) => {
                let stop_event = usage_stats::UsageStatsEvent::new(
                    ua.clone(),
                    usage_stats::EventType::Stop,
                    None,
                );
                stop_event.send().await;
                Ok(())
jixx's avatar
init  
jixx committed
1909
            }
jixx's avatar
jixx committed
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
            Err(e) => {
                let description = match usage_stats_level {
                    usage_stats::UsageStatsLevel::On => Some(e.to_string()),
                    usage_stats::UsageStatsLevel::NoStack => Some("unknow_error".to_string()),
                    _ => None,
                };
                let event = usage_stats::UsageStatsEvent::new(
                    ua.clone(),
                    usage_stats::EventType::Error,
                    description,
                );
                event.send().await;

                Err(e)
jixx's avatar
init  
jixx committed
1924
1925
            }
        }
jixx's avatar
jixx committed
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943
1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
    } else {
        result
    }
}

#[allow(clippy::too_many_arguments)]
async fn start(
    backend: impl Backend + Send + Sync + 'static,
    max_concurrent_requests: usize,
    max_best_of: usize,
    max_stop_sequences: usize,
    max_top_n_tokens: u32,
    max_input_tokens: usize,
    max_total_tokens: usize,
    validation_workers: usize,
    api_key: Option<String>,
    config: Option<Config>,
    (tokenizer, tokenizer_config): (Option<Tokenizer>, HubTokenizerConfig),
    (preprocessor_config, processor_config): (Option<HubPreprocessorConfig>, HubProcessorConfig),
    hostname: String,
    port: u16,
    ngrok: bool,
    _ngrok_authtoken: Option<String>,
    _ngrok_edge: Option<String>,
    disable_grammar_support: bool,
    max_client_batch_size: usize,
    model_info: HubModelInfo,
    compat_return_full_text: bool,
    allow_origin: Option<AllowOrigin>,
) -> Result<(), WebServerError> {
    // Determine the server port based on the feature and environment variable.
    let port = if cfg!(feature = "google") {
        std::env::var("AIP_HTTP_PORT")
            .map(|aip_http_port| aip_http_port.parse::<u16>().unwrap_or(port))
            .unwrap_or(port)
    } else {
        port
    };

    let addr = match hostname.parse() {
        Ok(ip) => SocketAddr::new(ip, port),
        Err(_) => {
            tracing::warn!("Invalid hostname, defaulting to 0.0.0.0");
            SocketAddr::new(IpAddr::V4(Ipv4Addr::new(0, 0, 0, 0)), port)
        }
jixx's avatar
init  
jixx committed
1971
1972
    };

jixx's avatar
jixx committed
1973
    // Create state
jixx's avatar
init  
jixx committed
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
    let validation = Validation::new(
        validation_workers,
        tokenizer,
        config,
        preprocessor_config,
        max_best_of,
        max_stop_sequences,
        max_top_n_tokens,
        max_input_tokens,
        max_total_tokens,
jixx's avatar
jixx committed
1984
        disable_grammar_support,
jixx's avatar
init  
jixx committed
1985
1986
1987
    );

    let infer = Infer::new(
jixx's avatar
jixx committed
1988
        backend,
jixx's avatar
init  
jixx committed
1989
1990
1991
1992
1993
1994
1995
1996
1997
1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
        validation,
        max_concurrent_requests,
        tokenizer_config,
        processor_config,
    );

    // Duration buckets
    let duration_matcher = Matcher::Suffix(String::from("duration"));
    let n_duration_buckets = 35;
    let mut duration_buckets = Vec::with_capacity(n_duration_buckets);
    // Minimum duration in seconds
    let mut value = 0.0001;
    for _ in 0..n_duration_buckets {
        // geometric sequence
        value *= 1.5;
        duration_buckets.push(value);
    }
    // Input Length buckets
    let input_length_matcher = Matcher::Full(String::from("tgi_request_input_length"));
    let input_length_buckets: Vec<f64> = (0..100)
        .map(|x| (max_input_tokens as f64 / 100.0) * (x + 1) as f64)
        .collect();
    // Generated tokens buckets
    let generated_tokens_matcher = Matcher::Full(String::from("tgi_request_generated_tokens"));
    let generated_tokens_buckets: Vec<f64> = (0..100)
        .map(|x| (max_total_tokens as f64 / 100.0) * (x + 1) as f64)
        .collect();
    // Input Length buckets
    let max_new_tokens_matcher = Matcher::Full(String::from("tgi_request_max_new_tokens"));
    let max_new_tokens_buckets: Vec<f64> = (0..100)
        .map(|x| (max_total_tokens as f64 / 100.0) * (x + 1) as f64)
        .collect();
    // Batch size buckets
    let batch_size_matcher = Matcher::Full(String::from("tgi_batch_next_size"));
    let batch_size_buckets: Vec<f64> = (0..1024).map(|x| (x + 1) as f64).collect();
    // Speculated tokens buckets
jixx's avatar
jixx committed
2025
2026
    // let skipped_matcher = Matcher::Full(String::from("tgi_request_skipped_tokens"));
    // let skipped_buckets: Vec<f64> = (0..shard_info.speculate + 1).map(|x| x as f64).collect();
jixx's avatar
init  
jixx committed
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039

    // Prometheus handler
    let builder = PrometheusBuilder::new()
        .set_buckets_for_metric(duration_matcher, &duration_buckets)
        .unwrap()
        .set_buckets_for_metric(input_length_matcher, &input_length_buckets)
        .unwrap()
        .set_buckets_for_metric(generated_tokens_matcher, &generated_tokens_buckets)
        .unwrap()
        .set_buckets_for_metric(max_new_tokens_matcher, &max_new_tokens_buckets)
        .unwrap()
        .set_buckets_for_metric(batch_size_matcher, &batch_size_buckets)
        .unwrap();
jixx's avatar
jixx committed
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051
2052
2053
2054
2055
2056
2057
2058
2059
2060
2061
2062
2063
2064
2065
2066
2067
2068
2069
2070
2071
2072
2073
2074
2075
2076
2077
2078
2079
2080
2081
2082
2083
2084
2085
2086
2087
2088
2089
2090
2091
2092
2093
2094
2095
2096
2097
2098
2099
2100
2101
2102
2103
2104
2105
2106
2107
2108
2109
2110
2111
2112
2113
2114
2115
2116
2117
2118
2119
2120
2121
2122
2123
2124
2125
2126
2127
2128
2129
2130
2131
2132
2133
2134
2135
2136
2137
2138
2139
2140
2141
2142
2143
2144
2145
2146
2147
2148
2149
2150
2151
2152
2153
2154
2155
2156
2157
2158
2159
2160
2161
2162
2163
2164
2165
2166
    // .set_buckets_for_metric(skipped_matcher, &skipped_buckets)
    // .unwrap();
    // See: https://github.com/metrics-rs/metrics/issues/467#issuecomment-2022755151
    let (recorder, _) = builder
        .build()
        .expect("failed to build prometheus recorder");
    let prom_handle = recorder.handle();
    metrics::set_global_recorder(recorder).expect("Failed to set global recorder");

    // Metrics descriptions
    metrics::describe_counter!("tgi_request_success", "Number of successful requests");
    metrics::describe_histogram!(
        "tgi_request_duration",
        metrics::Unit::Seconds,
        "Request duration"
    );
    metrics::describe_histogram!(
        "tgi_request_validation_duration",
        metrics::Unit::Seconds,
        "Request validation duration"
    );
    metrics::describe_histogram!(
        "tgi_request_queue_duration",
        metrics::Unit::Seconds,
        "Request queue duration"
    );
    metrics::describe_histogram!(
        "tgi_request_inference_duration",
        metrics::Unit::Seconds,
        "Request inference duration"
    );
    metrics::describe_histogram!(
        "tgi_request_mean_time_per_token_duration",
        metrics::Unit::Seconds,
        "Mean time per token per request"
    );
    metrics::describe_histogram!(
        "tgi_request_generated_tokens",
        metrics::Unit::Count,
        "Generated tokens per request"
    );
    metrics::describe_counter!(
        "tgi_batch_inference_count",
        metrics::Unit::Count,
        "Inference calls per method (prefill or decode)"
    );
    metrics::describe_counter!(
        "tgi_request_count",
        metrics::Unit::Count,
        "Total number of requests"
    );
    metrics::describe_counter!(
        "tgi_batch_inference_success",
        metrics::Unit::Count,
        "Number of successful inference calls per method (prefill or decode)"
    );
    metrics::describe_gauge!(
        "tgi_batch_current_size",
        metrics::Unit::Count,
        "Current batch size"
    );
    metrics::describe_gauge!("tgi_queue_size", metrics::Unit::Count, "Current queue size");
    metrics::describe_gauge!(
        "tgi_batch_current_max_tokens",
        metrics::Unit::Count,
        "Maximum tokens for the current batch"
    );
    metrics::describe_gauge!(
        "tgi_batch_total_tokens",
        metrics::Unit::Count,
        "Maximum amount of tokens in total."
    );
    metrics::describe_histogram!(
        "tgi_request_max_new_tokens",
        metrics::Unit::Count,
        "Maximum new tokens per request"
    );
    metrics::describe_histogram!(
        "tgi_batch_inference_duration",
        metrics::Unit::Seconds,
        "Batch inference duration"
    );
    metrics::describe_histogram!(
        "tgi_batch_forward_duration",
        metrics::Unit::Seconds,
        "Batch forward duration per method (prefill or decode)"
    );
    metrics::describe_histogram!(
        "tgi_request_skipped_tokens",
        metrics::Unit::Count,
        "Speculated tokens per request"
    );
    metrics::describe_histogram!(
        "tgi_batch_filter_duration",
        metrics::Unit::Seconds,
        "Time spent filtering batches and sending generated tokens per method (prefill or decode)"
    );
    metrics::describe_histogram!(
        "tgi_request_queue_duration",
        metrics::Unit::Seconds,
        "Time spent in the queue per request"
    );
    metrics::describe_histogram!(
        "tgi_request_validation_duration",
        metrics::Unit::Seconds,
        "Time spent validating the request"
    );
    metrics::describe_histogram!(
        "tgi_request_duration",
        metrics::Unit::Seconds,
        "Total time spent processing the request"
    );
    metrics::describe_histogram!(
        "tgi_batch_decode_duration",
        metrics::Unit::Seconds,
        "Time spent decoding a batch per method (prefill or decode)"
    );
    metrics::describe_histogram!(
        "tgi_request_input_length",
        metrics::Unit::Count,
        "Input token length per request"
    );
    metrics::describe_histogram!(
        "tgi_batch_next_size",
        metrics::Unit::Count,
        "Batch size of the next batch"
    );
jixx's avatar
init  
jixx committed
2167
2168
2169
2170
2171
2172
2173
2174
2175
2176
2177
2178

    // CORS layer
    let allow_origin = allow_origin.unwrap_or(AllowOrigin::any());
    let cors_layer = CorsLayer::new()
        .allow_methods([Method::GET, Method::POST])
        .allow_headers([http::header::CONTENT_TYPE])
        .allow_origin(allow_origin);

    // Endpoint info
    let info = Info {
        model_id: model_info.model_id,
        model_sha: model_info.sha,
jixx's avatar
jixx committed
2179
2180
        // model_dtype: shard_info.dtype,
        // model_device_type: shard_info.device_type,
jixx's avatar
init  
jixx committed
2181
2182
2183
2184
2185
2186
        model_pipeline_tag: model_info.pipeline_tag,
        max_concurrent_requests,
        max_best_of,
        max_stop_sequences,
        max_input_tokens,
        max_total_tokens,
jixx's avatar
jixx committed
2187
2188
2189
2190
        // waiting_served_ratio,
        // max_batch_total_tokens,
        // max_waiting_tokens,
        // max_batch_size,
jixx's avatar
init  
jixx committed
2191
2192
2193
2194
2195
2196
2197
2198
2199
2200
2201
2202
2203
        validation_workers,
        max_client_batch_size,
        router: env!("CARGO_PKG_NAME"),
        version: env!("CARGO_PKG_VERSION"),
        sha: option_env!("VERGEN_GIT_SHA"),
        docker_label: option_env!("DOCKER_LABEL"),
    };

    #[allow(unused_mut)] // mut is needed for conditional compilation
    let mut doc = ApiDoc::openapi();

    #[cfg(feature = "google")]
    {
jixx's avatar
jixx committed
2204
2205
        use crate::vertex::__path_vertex_compatibility;
        use crate::vertex::{VertexInstance, VertexRequest, VertexResponse};
jixx's avatar
init  
jixx committed
2206
2207
2208
2209
2210
2211
2212
2213
2214
2215
2216
2217
2218
2219
2220
2221
2222
2223
2224
2225
2226
2227
2228
2229
2230
2231
2232
2233
2234
2235
2236
2237
2238
2239
2240
2241
2242
2243
2244
2245
2246
2247
2248
2249
2250
2251
2252
2253
2254
2255
2256

        #[derive(OpenApi)]
        #[openapi(
            paths(vertex_compatibility),
            components(schemas(VertexInstance, VertexRequest, VertexResponse))
        )]
        struct VertexApiDoc;

        doc.merge(VertexApiDoc::openapi());
    }

    #[cfg(feature = "kserve")]
    {
        use crate::kserve::{
            InferenceOutput, InferenceRequest, LiveResponse, MetadataServerResponse, OutputChunk,
            ReadyResponse,
        };
        use crate::kserve::{
            __path_kerve_server_metadata, __path_kserve_health_live, __path_kserve_health_ready,
            __path_kserve_model_infer, __path_kserve_model_metadata,
            __path_kserve_model_metadata_ready,
        };

        #[derive(OpenApi)]
        #[openapi(
            paths(
                kserve_health_live,
                kserve_health_ready,
                kerve_server_metadata,
                kserve_model_metadata,
                kserve_model_metadata_ready,
                kserve_model_infer,
            ),
            components(schemas(
                InferenceOutput,
                InferenceRequest,
                LiveResponse,
                MetadataServerResponse,
                OutputChunk,
                ReadyResponse,
            ))
        )]
        struct KServeApiDoc;

        doc.merge(KServeApiDoc::openapi());
    }

    // Configure Swagger UI
    let swagger_ui = SwaggerUi::new("/docs").url("/api-doc/openapi.json", doc);

    // Define base and health routes
jixx's avatar
jixx committed
2257
    let mut base_routes = Router::new()
jixx's avatar
init  
jixx committed
2258
2259
2260
2261
2262
2263
        .route("/", post(compat_generate))
        .route("/generate", post(generate))
        .route("/generate_stream", post(generate_stream))
        .route("/v1/chat/completions", post(chat_completions))
        .route("/v1/completions", post(completions))
        .route("/vertex", post(vertex_compatibility))
jixx's avatar
jixx committed
2264
2265
2266
2267
2268
2269
2270
2271
2272
2273
2274
2275
2276
2277
2278
2279
2280
2281
2282
2283
2284
2285
2286
2287
2288
2289
2290
2291
2292
2293
2294
        .route("/invocations", post(sagemaker_compatibility))
        .route("/tokenize", post(tokenize));

    if let Some(api_key) = api_key {
        let mut prefix = "Bearer ".to_string();
        prefix.push_str(&api_key);

        // Leak to allow FnMut
        let api_key: &'static str = prefix.leak();

        let auth = move |headers: HeaderMap,
                         request: axum::extract::Request,
                         next: axum::middleware::Next| async move {
            match headers.get(AUTHORIZATION) {
                Some(token) => match token.to_str() {
                    Ok(token_str) if token_str.to_lowercase() == api_key.to_lowercase() => {
                        let response = next.run(request).await;
                        Ok(response)
                    }
                    _ => Err(StatusCode::UNAUTHORIZED),
                },
                None => Err(StatusCode::UNAUTHORIZED),
            }
        };

        base_routes = base_routes.layer(axum::middleware::from_fn(auth))
    }
    let info_routes = Router::new()
        .route("/", get(health))
        .route("/chat_tokenize", post(get_chat_tokenize))
        .route("/info", get(get_model_info))
jixx's avatar
init  
jixx committed
2295
2296
        .route("/health", get(health))
        .route("/ping", get(health))
jixx's avatar
jixx committed
2297
2298
        .route("/metrics", get(metrics))
        .route("/v1/models", get(openai_get_model_info));
jixx's avatar
init  
jixx committed
2299
2300
2301
2302
2303
2304
2305
2306

    let compute_type =
        ComputeType(std::env::var("COMPUTE_TYPE").unwrap_or("gpu+optimized".to_string()));

    // Combine routes and layers
    let mut app = Router::new()
        .merge(swagger_ui)
        .merge(base_routes)
jixx's avatar
jixx committed
2307
        .merge(info_routes);
jixx's avatar
init  
jixx committed
2308
2309
2310
2311
2312
2313
2314
2315
2316
2317
2318
2319
2320
2321
2322
2323
2324
2325
2326
2327
2328
2329
2330
2331
2332
2333
2334
2335
2336
2337
2338
2339
2340
2341
2342
2343
2344
2345
2346
2347
2348
2349
2350
2351
2352
2353
2354
2355
2356
2357
2358
2359
2360
2361
2362
2363
2364
2365
2366
2367
2368
2369
2370
2371
2372
2373
2374
2375
2376
2377
2378
2379
2380
2381
2382
2383

    #[cfg(feature = "google")]
    {
        tracing::info!("Built with `google` feature");
        tracing::info!(
            "Environment variables `AIP_PREDICT_ROUTE` and `AIP_HEALTH_ROUTE` will be respected."
        );
        if let Ok(env_predict_route) = std::env::var("AIP_PREDICT_ROUTE") {
            app = app.route(&env_predict_route, post(vertex_compatibility));
        }
        if let Ok(env_health_route) = std::env::var("AIP_HEALTH_ROUTE") {
            app = app.route(&env_health_route, get(health));
        }
    }

    #[cfg(feature = "kserve")]
    {
        tracing::info!("Built with `kserve` feature");
        app = app
            .route(
                "/v2/models/:model_name/versions/:model_version/infer",
                post(kserve_model_infer),
            )
            .route(
                "/v2/models/:model_name/versions/:model_version",
                get(kserve_model_metadata),
            )
            .route("/v2/health/ready", get(kserve_health_ready))
            .route("/v2/health/live", get(kserve_health_live))
            .route("/v2", get(kerve_server_metadata))
            .route(
                "/v2/models/:model_name/versions/:model_version/ready",
                get(kserve_model_metadata_ready),
            );
    }

    // add layers after routes
    app = app
        .layer(Extension(info))
        .layer(Extension(compat_return_full_text))
        .layer(Extension(infer))
        .layer(Extension(compute_type))
        .layer(Extension(prom_handle.clone()))
        .layer(OtelAxumLayer::default())
        .layer(cors_layer);

    tracing::info!("Connected");

    if ngrok {
        #[cfg(feature = "ngrok")]
        {
            panic!("ngrok feature is not functional with axum=0.7 and hyper=1, waiting on https://github.com/ngrok/ngrok-rust/pull/137/files to re-enable.");

            // Run server
        }
        #[cfg(not(feature = "ngrok"))]
        {
            let _ngrok_authtoken = ngrok_authtoken;
            let _ngrok_domain = ngrok_domain;
            let _ngrok_username = ngrok_username;
            let _ngrok_password = ngrok_password;

            panic!("`text-generation-router` was compiled without the `ngrok` feature");
        }
    } else {
        // Run server

        let listener = tokio::net::TcpListener::bind(&addr).await.unwrap();
        axum::serve(listener, app)
            .with_graceful_shutdown(shutdown_signal())
            .await
            .map_err(|err| WebServerError::Axum(Box::new(err)))?;
    }
    Ok(())
}

jixx's avatar
jixx committed
2384
2385
2386
2387
2388
2389
2390
2391
2392
2393
2394
2395
2396
2397
2398
2399
2400
2401
2402
2403
2404
2405
2406
2407
2408
2409
2410
2411
2412
2413
2414
2415
2416
2417
2418
2419
2420
2421
2422
2423
2424
2425
2426
2427
2428
2429
2430
2431
2432
2433
2434
2435
2436
2437
2438
2439
2440
2441
2442
2443
2444
2445
/// get model info from the Huggingface Hub
pub async fn get_hub_model_info(api: &ApiRepo) -> Option<HubModelInfo> {
    let response = api.info_request().send().await.ok()?;

    if response.status().is_success() {
        let hub_model_info: HubModelInfo =
            serde_json::from_str(&response.text().await.ok()?).ok()?;
        if let Some(sha) = &hub_model_info.sha {
            tracing::info!(
                "Serving revision {sha} of model {}",
                hub_model_info.model_id
            );
        }
        Some(hub_model_info)
    } else {
        None
    }
}

/// get base tokenizer
pub async fn get_base_tokenizer(api: &Api, api_repo: &ApiRepo) -> Option<PathBuf> {
    let config_filename = api_repo.get("config.json").await.ok()?;

    // Open the file in read-only mode with buffer.
    let file = File::open(config_filename).ok()?;
    let reader = BufReader::new(file);

    // Read the JSON contents of the file as an instance of `User`.
    let config: serde_json::Value = serde_json::from_reader(reader).ok()?;

    if let Some(serde_json::Value::String(base_model_id)) = config.get("base_model_name_or_path") {
        let api_base_repo = api.repo(Repo::with_revision(
            base_model_id.to_string(),
            RepoType::Model,
            "main".to_string(),
        ));

        api_base_repo.get("tokenizer.json").await.ok()
    } else {
        None
    }
}

/// get tokenizer_config from the Huggingface Hub
pub async fn get_tokenizer_config(api_repo: &ApiRepo) -> Option<HubTokenizerConfig> {
    let tokenizer_config_filename = api_repo.get("tokenizer_config.json").await.ok()?;

    // Open the file in read-only mode with buffer.
    let file = File::open(tokenizer_config_filename).ok()?;
    let reader = BufReader::new(file);

    // Read the JSON contents of the file as an instance of 'HubTokenizerConfig'.
    let tokenizer_config: HubTokenizerConfig = serde_json::from_reader(reader)
        .map_err(|e| {
            tracing::warn!("Unable to parse tokenizer config: {}", e);
            e
        })
        .ok()?;

    Some(tokenizer_config)
}

jixx's avatar
init  
jixx committed
2446
2447
2448
2449
2450
2451
2452
2453
2454
2455
2456
2457
2458
2459
2460
2461
2462
2463
2464
2465
2466
2467
2468
2469
2470
2471
2472
2473
2474
2475
2476
2477
2478
2479
2480
2481
/// Shutdown signal handler
async fn shutdown_signal() {
    let ctrl_c = async {
        signal::ctrl_c()
            .await
            .expect("failed to install Ctrl+C handler");
    };

    #[cfg(unix)]
    let terminate = async {
        signal::unix::signal(signal::unix::SignalKind::terminate())
            .expect("failed to install signal handler")
            .recv()
            .await;
    };

    #[cfg(not(unix))]
    let terminate = std::future::pending::<()>();

    tokio::select! {
        _ = ctrl_c => {},
        _ = terminate => {},
    }

    tracing::info!("signal received, starting graceful shutdown");
    opentelemetry::global::shutdown_tracer_provider();
}

/// Convert to Axum supported formats
impl From<InferError> for (StatusCode, Json<ErrorResponse>) {
    fn from(err: InferError) -> Self {
        let status_code = match err {
            InferError::GenerationError(_) => StatusCode::FAILED_DEPENDENCY,
            InferError::Overloaded(_) => StatusCode::TOO_MANY_REQUESTS,
            InferError::ValidationError(_) => StatusCode::UNPROCESSABLE_ENTITY,
            InferError::IncompleteGeneration => StatusCode::INTERNAL_SERVER_ERROR,
jixx's avatar
jixx committed
2482
            InferError::IncompleteGenerationStream => StatusCode::INTERNAL_SERVER_ERROR,
jixx's avatar
init  
jixx committed
2483
            InferError::TemplateError(_) => StatusCode::UNPROCESSABLE_ENTITY,
jixx's avatar
jixx committed
2484
            InferError::MissingTemplateVariable(_) => StatusCode::UNPROCESSABLE_ENTITY,
jixx's avatar
init  
jixx committed
2485
            InferError::ToolError(_) => StatusCode::UNPROCESSABLE_ENTITY,
jixx's avatar
jixx committed
2486
            InferError::StreamSerializationError(_) => StatusCode::INTERNAL_SERVER_ERROR,
jixx's avatar
init  
jixx committed
2487
2488
2489
2490
2491
2492
2493
2494
2495
2496
2497
2498
2499
2500
2501
2502
2503
2504
2505
2506
2507
2508
2509
2510
2511
2512
2513
2514
        };

        (
            status_code,
            Json(ErrorResponse {
                error: err.to_string(),
                error_type: err.error_type().to_string(),
            }),
        )
    }
}

impl From<InferError> for Event {
    fn from(err: InferError) -> Self {
        Event::default()
            .json_data(ErrorResponse {
                error: err.to_string(),
                error_type: err.error_type().to_string(),
            })
            .unwrap()
    }
}

#[derive(Debug, Error)]
pub enum WebServerError {
    #[error("Axum error: {0}")]
    Axum(#[from] axum::BoxError),
}
jixx's avatar
jixx committed
2515
2516
2517
2518
2519
2520
2521
2522
2523
2524
2525
2526
2527
2528
2529
2530
2531
2532
2533
2534
2535
2536
2537
2538
2539
2540
2541
2542
2543
2544
2545
2546
2547
2548
2549
2550
2551
2552
2553
2554
2555
2556
2557
2558
2559
2560
2561
2562
2563
2564
2565
2566
2567
2568
2569
2570
2571
2572
2573
2574
2575
2576
2577
2578
2579
2580
2581
2582
2583
2584
2585
2586
2587
2588
2589
2590
2591
2592
2593
2594
2595
2596
2597
2598
2599
2600
2601
2602
2603
2604
2605
2606
2607
2608
2609
2610
2611
2612
2613
2614
2615
2616
2617
2618
2619
2620
2621
2622
2623
2624
2625
2626
2627
2628
2629
2630
2631
2632
2633
2634
2635
2636
2637
2638
2639
2640
2641
2642
2643
2644
2645
2646
2647
2648
2649
2650
2651
2652
2653
2654
2655
2656
2657
2658
2659
2660
2661
2662
2663
2664
2665
2666
2667
2668

type PreparedInput = (String, Option<GrammarType>, bool);

pub(crate) fn prepare_chat_input(
    infer: &Infer,
    response_format: Option<GrammarType>,
    tools: Option<Vec<Tool>>,
    tool_choice: ToolChoice,
    tool_prompt: &str,
    guideline: Option<String>,
    messages: Vec<Message>,
) -> Result<PreparedInput, InferError> {
    if response_format.is_some() && tools.is_some() {
        return Err(InferError::ToolError(
            "Grammar and tools are mutually exclusive".into(),
        ));
    }

    // when response_format is set, tools are not included when applying the chat template to generate inputs
    if let Some(format) = response_format {
        let inputs = infer.apply_chat_template(guideline, messages, None)?;
        return Ok((inputs, Some(format), false));
    }

    // when no response_format is set and tools are included, apply the chat template with the tools
    // to generate inputs
    if let Some(tools) = tools {
        let (updated_tools, tool_schema) = ToolGrammar::apply(tools, tool_choice)?;

        let grammar = tool_schema
            .as_ref()
            .map(|t| GrammarType::Json(serde_json::json!(t)));

        let inputs: String = infer.apply_chat_template(
            guideline,
            messages,
            Some((updated_tools, tool_prompt.into())),
        )?;
        return Ok((inputs, grammar, tool_schema.is_some()));
    }

    // if no response_format or tools are set simply apply the chat template to generate inputs
    let inputs = infer.apply_chat_template(guideline, messages, None)?;
    Ok((inputs, None, false))
}

#[cfg(test)]
mod tests {
    use super::*;
    use crate::ChatTemplateVersions;
    use crate::HubTokenizerConfig;
    use crate::TokenizerConfigToken;
    use crate::Tool;

    use serde_json::json;

    #[test]
    fn test_prepare_chat_input() {
        // Mock Backend to avoid network requests
        struct MockBackend;

        impl Backend for MockBackend {
            fn schedule(
                &self,
                _request: crate::validation::ValidGenerateRequest,
            ) -> Result<
                tokio_stream::wrappers::UnboundedReceiverStream<
                    Result<InferStreamResponse, InferError>,
                >,
                InferError,
            > {
                unimplemented!("Never called in this test");
            }
            fn health<'a, 'async_trait>(
                &'a self,
                _current_health: bool,
            ) -> core::pin::Pin<
                Box<dyn core::future::Future<Output = bool> + core::marker::Send + 'async_trait>,
            >
            where
                'a: 'async_trait,
                Self: 'async_trait,
            {
                unimplemented!("Never called in this test");
            }
        }

        let backend = MockBackend {};

        let mut tokenizer_config = HubTokenizerConfig::default();

        // mock tokenizer config values
        tokenizer_config.bos_token = Some(TokenizerConfigToken::String("<s>".to_string()));
        tokenizer_config.eos_token = Some(TokenizerConfigToken::String("</s>".to_string()));
        tokenizer_config.chat_template = Some(
            ChatTemplateVersions::Single("{%- if messages[0][\"role\"] == \"system\" %}\n    {%- set system_message = messages[0][\"content\"] %}\n    {%- set loop_messages = messages[1:] %}\n{%- else %}\n    {%- set loop_messages = messages %}\n{%- endif %}\n{%- if not tools is defined %}\n    {%- set tools = none %}\n{%- endif %}\n{%- set user_messages = loop_messages | selectattr(\"role\", \"equalto\", \"user\") | list %}\n\n{#- This block checks for alternating user/assistant messages, skipping tool calling messages #}\n{%- set ns = namespace() %}\n{%- set ns.index = 0 %}\n{%- for message in loop_messages %}\n    {%- if not (message.role == \"tool\" or message.role == \"tool_results\" or (message.tool_calls is defined and message.tool_calls is not none)) %}\n        {%- if (message[\"role\"] == \"user\") != (ns.index % 2 == 0) %}\n            {{- raise_exception(\"After the optional system message, conversation roles must alternate user/assistant/user/assistant/...\") }}\n        {%- endif %}\n        {%- set ns.index = ns.index + 1 %}\n    {%- endif %}\n{%- endfor %}\n\n{{- bos_token }}\n{%- for message in loop_messages %}\n    {%- if message[\"role\"] == \"user\" %}\n        {%- if tools is not none and (message == user_messages[-1]) %}\n            {{- \"[AVAILABLE_TOOLS] [\" }}\n            {%- for tool in tools %}\n                {%- set tool = tool.function %}\n                {{- '{\"type\": \"function\", \"function\": {' }}\n                {%- for key, val in tool.items() if key != \"return\" %}\n                    {%- if val is string %}\n                        {{- '\"' + key + '\": \"' + val + '\"' }}\n                    {%- else %}\n                        {{- '\"' + key + '\": ' + val|tojson }}\n                    {%- endif %}\n                    {%- if not loop.last %}\n                        {{- \", \" }}\n                    {%- endif %}\n                {%- endfor %}\n                {{- \"}}\" }}\n                {%- if not loop.last %}\n                    {{- \", \" }}\n                {%- else %}\n                    {{- \"]\" }}\n                {%- endif %}\n            {%- endfor %}\n            {{- \"[/AVAILABLE_TOOLS]\" }}\n            {%- endif %}\n        {%- if loop.last and system_message is defined %}\n            {{- \"[INST] \" + system_message + \"\\n\\n\" + message[\"content\"] + \"[/INST]\" }}\n        {%- else %}\n            {{- \"[INST] \" + message[\"content\"] + \"[/INST]\" }}\n        {%- endif %}\n    {%- elif message.tool_calls is defined and message.tool_calls is not none %}\n        {{- \"[TOOL_CALLS] [\" }}\n        {%- for tool_call in message.tool_calls %}\n            {%- set out = tool_call.function|tojson %}\n            {{- out[:-1] }}\n            {%- if not tool_call.id is defined or tool_call.id|length != 9 %}\n                {{- raise_exception(\"Tool call IDs should be alphanumeric strings with length 9!\") }}\n            {%- endif %}\n            {{- ', \"id\": \"' + tool_call.id + '\"}' }}\n            {%- if not loop.last %}\n                {{- \", \" }}\n            {%- else %}\n                {{- \"]\" + eos_token }}\n            {%- endif %}\n        {%- endfor %}\n    {%- elif message[\"role\"] == \"assistant\" %}\n        {{- \" \" + message[\"content\"]|trim + eos_token}}\n    {%- elif message[\"role\"] == \"tool_results\" or message[\"role\"] == \"tool\" %}\n        {%- if message.content is defined and message.content.content is defined %}\n            {%- set content = message.content.content %}\n        {%- else %}\n            {%- set content = message.content %}\n        {%- endif %}\n        {{- '[TOOL_RESULTS] {\"content\": ' + content|string + \", \" }}\n        {%- if not message.tool_call_id is defined or message.tool_call_id|length != 9 %}\n            {{- raise_exception(\"Tool call IDs should be alphanumeric strings with length 9!\") }}\n        {%- endif %}\n        {{- '\"call_id\": \"' + message.tool_call_id + '\"}[/TOOL_RESULTS]' }}\n    {%- else %}\n        {{- raise_exception(\"Only user and assistant roles are supported, with the exception of an initial optional system message!\") }}\n    {%- endif %}\n{%- endfor %}\n".to_string())
        );

        let infer = Infer::new(
            backend,
            Validation::new(1, None, None, None, 1, 1, 1, 1, 1, false),
            1,
            tokenizer_config,
            HubProcessorConfig::default(),
        );
        let response_format = None;
        let tools = Some(vec![Tool {
            r#type: "function".to_string(),
            function: FunctionDefinition {
                name: "get_current_weather".to_string(),
                description: Some("Get the current weather".to_string()),
                arguments: json!({
                    "type": "object",
                    "properties": {
                        "location": {
                            "type": "string",
                            "description": "The city and state, e.g. San Francisco, CA"
                        },
                        "format": {
                            "type": "string",
                            "enum": ["celsius", "fahrenheit"],
                            "description": "The temperature unit to use. Infer this from the users location."
                        }
                    },
                    "required": ["location", "format"]
                }),
            },
        }]);
        let tool_prompt = "Given the functions available, please respond with a JSON for a function call with its proper arguments that best answers the given prompt. Respond in the format {name: function name, parameters: dictionary of argument name and its value}.Do not use variables.";
        let guideline = None;
        let messages = vec![Message {
            name: None,
            role: "user".to_string(),
            content: MessageContent::SingleText(
                "What is the weather like in New York?".to_string(),
            ),
        }];

        let result = prepare_chat_input(
            &infer,
            response_format,
            tools,
            ToolChoice(None),
            tool_prompt,
            guideline,
            messages,
        );

        assert!(result.is_ok());
        let (inputs, _grammar, using_tools) = result.expect("Failed to prepare chat input");
        assert_eq!(using_tools, true);
        assert_eq!(inputs, "<s>[AVAILABLE_TOOLS] [{\"type\": \"function\", \"function\": {\"arguments\": {\"properties\":{\"format\":{\"description\":\"The temperature unit to use. Infer this from the users location.\",\"enum\":[\"celsius\",\"fahrenheit\"],\"type\":\"string\"},\"location\":{\"description\":\"The city and state, e.g. San Francisco, CA\",\"type\":\"string\"}},\"required\":[\"location\",\"format\"],\"type\":\"object\"}, \"description\": \"Get the current weather\", \"name\": \"get_current_weather\"}}, {\"type\": \"function\", \"function\": {\"arguments\": {\"properties\":{\"content\":{\"description\":\"The response content\",\"type\":\"string\"}},\"required\":[\"content\"],\"type\":\"object\"}, \"description\": \"Open ened response with no specific tool selected\", \"name\": \"no_tool\"}}][/AVAILABLE_TOOLS][INST] What is the weather like in New York?\n---\nGiven the functions available, please respond with a JSON for a function call with its proper arguments that best answers the given prompt. Respond in the format {name: function name, parameters: dictionary of argument name and its value}.Do not use variables.[/INST]".to_string());
    }
}