lib.rs 49.3 KB
Newer Older
jixx's avatar
init  
jixx committed
1
2
/// Text Generation Inference Webserver
pub mod config;
jixx's avatar
jixx committed
3
pub mod infer;
jixx's avatar
init  
jixx committed
4
pub mod server;
jixx's avatar
jixx committed
5
pub mod validation;
jixx's avatar
init  
jixx committed
6
7
8

#[cfg(feature = "kserve")]
mod kserve;
jixx's avatar
jixx committed
9
pub mod logging;
jixx's avatar
init  
jixx committed
10

jixx's avatar
jixx committed
11
12
13
14
15
16
mod sagemaker;
pub mod usage_stats;
mod vertex;

use crate::infer::{Infer, InferError};
use crate::server::prepare_chat_input;
jixx's avatar
init  
jixx committed
17
18
19
20
21
22
23
24
25
26
27
28
29
30
use serde::{Deserialize, Serialize};
use tracing::warn;
use utoipa::ToSchema;
use validation::Validation;

/// Hub type
#[derive(Clone, Debug, Deserialize)]
pub struct HubModelInfo {
    #[serde(rename(deserialize = "id"))]
    pub model_id: String,
    pub sha: Option<String>,
    pub pipeline_tag: Option<String>,
}

jixx's avatar
jixx committed
31
#[derive(Debug, Clone, Serialize, Deserialize, PartialEq)]
jixx's avatar
init  
jixx committed
32
33
34
35
36
pub struct ChatTemplate {
    name: String,
    template: String,
}

jixx's avatar
jixx committed
37
#[derive(Debug, Clone, Serialize, Deserialize, PartialEq)]
jixx's avatar
init  
jixx committed
38
39
40
41
42
43
44
45
#[serde(untagged)]
pub enum ChatTemplateVersions {
    Single(String),
    Multiple(Vec<ChatTemplate>),
}

use std::path::Path;

jixx's avatar
jixx committed
46
#[derive(Debug, Clone, Serialize, Deserialize, Default)]
jixx's avatar
init  
jixx committed
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
pub struct HubTokenizerConfig {
    pub chat_template: Option<ChatTemplateVersions>,
    pub completion_template: Option<String>,
    pub bos_token: Option<TokenizerConfigToken>,
    pub eos_token: Option<TokenizerConfigToken>,
    pub tokenizer_class: Option<String>,
    pub add_bos_token: Option<bool>,
    pub add_eos_token: Option<bool>,
}

impl HubTokenizerConfig {
    pub fn from_file<P: AsRef<Path>>(filename: P) -> Option<Self> {
        std::fs::read_to_string(filename)
            .ok()
            .and_then(|content| serde_json::from_str(&content).ok())
    }
}

#[derive(Debug, Clone, Deserialize, Serialize, PartialEq)]
#[serde(untagged)]
pub enum TokenizerConfigToken {
    String(String),
    Object { content: String },
}

impl TokenizerConfigToken {
    pub fn as_str(&self) -> &str {
        match self {
            TokenizerConfigToken::String(s) => s,
            TokenizerConfigToken::Object { content } => content,
        }
    }
}

#[derive(Debug, Clone, Serialize, Deserialize)]
#[serde(tag = "processor_class")]
pub enum HubPreprocessorConfig {
    Idefics2Processor(Idefics2Preprocessor),
}

impl HubPreprocessorConfig {
    pub fn from_file<P: AsRef<std::path::Path>>(filename: P) -> Option<Self> {
        let content = std::fs::read_to_string(filename).ok()?;
        serde_json::from_str(&content).ok()
    }
}

#[derive(Clone, Debug, Serialize, Deserialize)]
pub struct Idefics2Preprocessor {
    #[serde(default)]
    do_image_splitting: bool,
}

#[derive(Debug, Clone, Deserialize, Default)]
pub struct HubProcessorConfig {
    pub chat_template: Option<ChatTemplateVersions>,
    pub image_seq_len: usize,
    pub processor_class: Option<String>,
}

impl HubProcessorConfig {
    pub fn from_file<P: AsRef<Path>>(filename: P) -> Option<Self> {
        std::fs::read_to_string(filename)
            .ok()
            .and_then(|content| serde_json::from_str(&content).ok())
    }
}

#[derive(Clone, Debug, Deserialize, ToSchema, Serialize)]
jixx's avatar
jixx committed
116
#[cfg_attr(test, derive(PartialEq))]
jixx's avatar
init  
jixx committed
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
#[serde(tag = "type", content = "value")]
pub(crate) enum GrammarType {
    /// A string that represents a [JSON Schema](https://json-schema.org/).
    ///
    /// JSON Schema is a declarative language that allows to annotate JSON documents
    /// with types and descriptions.
    #[serde(rename = "json")]
    #[serde(alias = "json_object")]
    #[schema(example = json ! ({"properties": {"location":{"type": "string"}}}))]
    Json(serde_json::Value),
    #[serde(rename = "regex")]
    Regex(String),
}

#[derive(Clone, Debug, Serialize, ToSchema)]
pub struct Info {
    /// Model info
    #[schema(example = "bigscience/blomm-560m")]
    pub model_id: String,
    #[schema(nullable = true, example = "e985a63cdc139290c5f700ff1929f0b5942cced2")]
    pub model_sha: Option<String>,
jixx's avatar
jixx committed
138
139
140
141
    // #[schema(example = "torch.float16")]
    // pub model_dtype: String,
    // #[schema(example = "cuda")]
    // pub model_device_type: String,
jixx's avatar
init  
jixx committed
142
143
    #[schema(nullable = true, example = "text-generation")]
    pub model_pipeline_tag: Option<String>,
jixx's avatar
jixx committed
144

jixx's avatar
init  
jixx committed
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
    /// Router Parameters
    #[schema(example = "128")]
    pub max_concurrent_requests: usize,
    #[schema(example = "2")]
    pub max_best_of: usize,
    #[schema(example = "4")]
    pub max_stop_sequences: usize,
    #[schema(example = "1024")]
    pub max_input_tokens: usize,
    #[schema(example = "2048")]
    pub max_total_tokens: usize,
    #[schema(example = "2")]
    pub validation_workers: usize,
    #[schema(example = "32")]
    pub max_client_batch_size: usize,
jixx's avatar
jixx committed
160

jixx's avatar
init  
jixx committed
161
162
163
164
165
166
167
168
169
170
171
172
    /// Router Info
    #[schema(example = "text-generation-router")]
    pub router: &'static str,
    #[schema(example = "0.5.0")]
    pub version: &'static str,
    #[schema(nullable = true, example = "null")]
    pub sha: Option<&'static str>,
    #[schema(nullable = true, example = "null")]
    pub docker_label: Option<&'static str>,
}

#[derive(Clone, Debug, Deserialize, ToSchema, Default)]
jixx's avatar
jixx committed
173
#[cfg_attr(test, derive(PartialEq))]
jixx's avatar
init  
jixx committed
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
pub(crate) struct GenerateParameters {
    /// Generate best_of sequences and return the one if the highest token logprobs.
    #[serde(default)]
    #[schema(exclusive_minimum = 0, nullable = true, default = "null", example = 1)]
    pub best_of: Option<usize>,

    /// The value used to module the logits distribution.
    #[serde(default)]
    #[schema(
        exclusive_minimum = 0.0,
        nullable = true,
        default = "null",
        example = 0.5
    )]
    pub temperature: Option<f32>,

    /// The parameter for repetition penalty. 1.0 means no penalty.
    /// See [this paper](https://arxiv.org/pdf/1909.05858.pdf) for more details.
    #[serde(default)]
    #[schema(
        exclusive_minimum = 0.0,
        nullable = true,
        default = "null",
        example = 1.03
    )]
    pub repetition_penalty: Option<f32>,

    /// The parameter for frequency penalty. 1.0 means no penalty
    /// Penalize new tokens based on their existing frequency in the text so far,
    /// decreasing the model's likelihood to repeat the same line verbatim.
    #[serde(default)]
    #[schema(
        exclusive_minimum = -2.0,
        nullable = true,
        default = "null",
        example = 0.1
    )]
    pub frequency_penalty: Option<f32>,

    /// The number of highest probability vocabulary tokens to keep for top-k-filtering.
    #[serde(default)]
    #[schema(exclusive_minimum = 0, nullable = true, default = "null", example = 10)]
    pub top_k: Option<i32>,

    /// Top-p value for nucleus sampling.
    #[serde(default)]
    #[schema(
        exclusive_minimum = 0.0,
        maximum = 1.0,
        nullable = true,
        default = "null",
        example = 0.95
    )]
    pub top_p: Option<f32>,

    /// Typical Decoding mass
    /// See [Typical Decoding for Natural Language Generation](https://arxiv.org/abs/2202.00666) for more information.
    #[serde(default)]
    #[schema(
        exclusive_minimum = 0.0,
        maximum = 1.0,
        nullable = true,
        default = "null",
        example = 0.95
    )]
    pub typical_p: Option<f32>,

    /// Activate logits sampling.
    #[serde(default)]
    #[schema(default = "false", example = true)]
    pub do_sample: bool,

    /// Maximum number of tokens to generate.
    #[serde(default = "default_max_new_tokens")]
    #[schema(nullable = true, default = "100", example = "20")]
    pub max_new_tokens: Option<u32>,

    /// Whether to prepend the prompt to the generated text
    #[serde(default)]
    #[schema(nullable = true, default = "null", example = false)]
    pub return_full_text: Option<bool>,

    /// Stop generating tokens if a member of `stop` is generated.
    #[serde(default)]
    #[schema(inline, max_items = 4, example = json ! (["photographer"]))]
    pub stop: Vec<String>,

    /// Truncate inputs tokens to the given size.
    #[serde(default)]
    #[schema(nullable = true, default = "null", example = "null")]
    pub truncate: Option<usize>,

    /// Watermarking with [A Watermark for Large Language Models](https://arxiv.org/abs/2301.10226).
    #[serde(default)]
    #[schema(default = "false", example = true)]
    pub watermark: bool,

    /// Whether to return generation details.
    #[serde(default)]
    #[schema(default = "true")]
    pub details: bool,

    /// Whether to return decoder input token logprobs and ids.
    #[serde(default)]
    #[schema(default = "false")]
    pub decoder_input_details: bool,

    /// Random sampling seed.
    #[serde(default)]
    #[schema(
        exclusive_minimum = 0,
        nullable = true,
        default = "null",
        example = "null"
    )]
    pub seed: Option<u64>,

    /// The number of highest probability vocabulary tokens to keep for top-n-filtering.
    #[serde(default)]
    #[schema(exclusive_minimum = 0, nullable = true, default = "null", example = 5)]
    pub top_n_tokens: Option<u32>,

    /// Grammar constraints for the generation.
    #[serde(default)]
    #[schema(nullable = true, default = "null", example = "null")]
    pub grammar: Option<GrammarType>,

    /// Lora adapter id
    #[serde(default)]
    #[schema(nullable = true, default = "null", example = "null")]
    pub adapter_id: Option<String>,
}

fn default_max_new_tokens() -> Option<u32> {
    Some(100)
}

fn default_parameters() -> GenerateParameters {
    GenerateParameters {
        best_of: None,
        temperature: None,
        repetition_penalty: None,
        frequency_penalty: None,
        top_k: None,
        top_p: None,
        typical_p: None,
        do_sample: true,
        max_new_tokens: default_max_new_tokens(),
        return_full_text: None,
        stop: Vec::new(),
        truncate: None,
        watermark: false,
        details: false,
        decoder_input_details: false,
        seed: None,
        top_n_tokens: None,
        grammar: None,
        adapter_id: None,
    }
}

#[derive(Clone, Deserialize, Serialize, ToSchema, Debug)]
#[serde(try_from = "PromptDeserializer")]
pub struct Prompt(pub Vec<String>);

#[derive(Deserialize)]
#[serde(untagged)]
enum PromptDeserializer {
    Single(String),
    Multiple(Vec<String>),
}

impl TryFrom<PromptDeserializer> for Prompt {
    type Error = String;

    fn try_from(value: PromptDeserializer) -> Result<Self, Self::Error> {
        match value {
            PromptDeserializer::Single(s) => Ok(Prompt(vec![s])),
            PromptDeserializer::Multiple(v) => {
                if v.is_empty() {
                    Err(
                        "Empty array detected. Do not use an empty array for the prompt."
                            .to_string(),
                    )
                } else {
                    Ok(Prompt(v))
                }
            }
        }
    }
}

#[derive(Clone, Deserialize, Serialize, ToSchema, Debug)]
pub struct CompletionRequest {
    /// UNUSED
    #[schema(example = "mistralai/Mistral-7B-Instruct-v0.2")]
    /// ID of the model to use. See the model endpoint compatibility table for details on which models work with the Chat API.
jixx's avatar
jixx committed
371
    pub model: Option<String>,
jixx's avatar
init  
jixx committed
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608

    /// The prompt to generate completions for.
    #[schema(example = "What is Deep Learning?")]
    pub prompt: Prompt,

    /// The maximum number of tokens that can be generated in the chat completion.
    #[serde(default)]
    #[schema(default = "32")]
    pub max_tokens: Option<u32>,

    /// What sampling temperature to use, between 0 and 2. Higher values like 0.8 will make the output more random, while
    /// lower values like 0.2 will make it more focused and deterministic. We generally recommend altering this or `top_p` but not both.
    #[serde(default)]
    #[schema(nullable = true, example = 1.0)]
    pub temperature: Option<f32>,

    /// An alternative to sampling with temperature, called nucleus sampling, where the model considers the results of the
    /// tokens with top_p probability mass. So 0.1 means only the tokens comprising the top 10% probability mass are considered.
    #[serde(default)]
    #[schema(nullable = true, example = 0.95)]
    pub top_p: Option<f32>,

    #[serde(default = "bool::default")]
    pub stream: bool,

    #[schema(nullable = true, example = 42)]
    pub seed: Option<u64>,

    /// The text to append to the prompt. This is useful for completing sentences or generating a paragraph of text.
    /// please see the completion_template field in the model's tokenizer_config.json file for completion template.
    #[serde(default)]
    pub suffix: Option<String>,

    #[serde(default)]
    pub repetition_penalty: Option<f32>,

    /// Number between -2.0 and 2.0. Positive values penalize new tokens based on their existing frequency in the text so far,
    /// decreasing the model's likelihood to repeat the same line verbatim.
    #[serde(default)]
    #[schema(example = "1.0")]
    pub frequency_penalty: Option<f32>,

    /// Up to 4 sequences where the API will stop generating further tokens.
    #[serde(default)]
    #[schema(nullable = true, example = "null")]
    pub stop: Option<Vec<String>>,
}

#[derive(Clone, Serialize, ToSchema)]
#[serde(tag = "object")]
enum Completion {
    #[serde(rename = "text_completion")]
    Chunk(Chunk),
    #[serde(rename = "text_completion")]
    Final(CompletionFinal),
}

#[derive(Clone, Deserialize, Serialize, ToSchema, Default)]
pub(crate) struct CompletionFinal {
    pub id: String,
    #[schema(example = "1706270835")]
    pub created: u64,
    #[schema(example = "mistralai/Mistral-7B-Instruct-v0.2")]
    pub model: String,
    pub system_fingerprint: String,
    pub choices: Vec<CompletionComplete>,
    pub usage: Usage,
}

#[derive(Clone, Deserialize, Serialize, ToSchema)]
pub(crate) struct CompletionComplete {
    pub index: u32,
    pub text: String,
    pub logprobs: Option<Vec<f32>>,
    pub finish_reason: String,
}

#[derive(Clone, Deserialize, Serialize, ToSchema)]
pub(crate) struct Chunk {
    pub id: String,
    pub created: u64,
    pub choices: Vec<CompletionComplete>,
    pub model: String,
    pub system_fingerprint: String,
}

#[derive(Clone, Deserialize, Serialize, ToSchema)]
pub(crate) struct ChatCompletion {
    pub id: String,
    #[schema(example = "1706270835")]
    pub created: u64,
    #[schema(example = "mistralai/Mistral-7B-Instruct-v0.2")]
    pub model: String,
    pub system_fingerprint: String,
    pub choices: Vec<ChatCompletionComplete>,
    pub usage: Usage,
}

#[derive(Clone, Deserialize, Serialize, ToSchema)]
pub(crate) struct ChatCompletionComplete {
    pub index: u32,
    pub message: OutputMessage,
    pub logprobs: Option<ChatCompletionLogprobs>,
    pub finish_reason: String,
}

#[derive(Clone, Deserialize, Serialize, ToSchema)]
pub(crate) struct ChatCompletionLogprobs {
    content: Vec<ChatCompletionLogprob>,
}

impl From<(Token, Vec<Token>)> for ChatCompletionLogprobs {
    fn from(value: (Token, Vec<Token>)) -> Self {
        let (token, top_tokens) = value;

        Self {
            content: vec![ChatCompletionLogprob {
                token: token.text,
                logprob: token.logprob,
                top_logprobs: top_tokens
                    .into_iter()
                    .map(|t| ChatCompletionTopLogprob {
                        token: t.text,
                        logprob: t.logprob,
                    })
                    .collect(),
            }],
        }
    }
}

impl From<(Vec<Token>, Vec<Vec<Token>>)> for ChatCompletionLogprobs {
    fn from(value: (Vec<Token>, Vec<Vec<Token>>)) -> Self {
        let (tokens, top_tokens) = value;

        // Create an iterator that produces None for top_tokens once it's exhausted
        let top_tokens_iter = top_tokens
            .into_iter()
            .map(Some)
            .chain(std::iter::repeat(None));

        let content = tokens
            .into_iter()
            .zip(top_tokens_iter)
            .map(|(t, top_t_option)| ChatCompletionLogprob {
                token: t.text,
                logprob: t.logprob,
                top_logprobs: match top_t_option {
                    Some(top_t) => top_t
                        .into_iter()
                        .map(|t| ChatCompletionTopLogprob {
                            token: t.text,
                            logprob: t.logprob,
                        })
                        .collect(),
                    None => vec![], // Handle the case where there are no top tokens
                },
            })
            .collect();

        Self { content }
    }
}

#[derive(Clone, Deserialize, Serialize, ToSchema)]
pub(crate) struct ChatCompletionLogprob {
    token: String,
    logprob: f32,
    top_logprobs: Vec<ChatCompletionTopLogprob>,
}

#[derive(Clone, Deserialize, Serialize, ToSchema)]
pub(crate) struct ChatCompletionTopLogprob {
    token: String,
    logprob: f32,
}

#[derive(Clone, Deserialize, Serialize, ToSchema, Default)]
pub(crate) struct Usage {
    pub prompt_tokens: u32,
    pub completion_tokens: u32,
    pub total_tokens: u32,
}

#[derive(Clone, Serialize, ToSchema)]
#[serde(tag = "object")]
enum CompletionType {
    #[serde(rename = "chat.completion.chunk")]
    ChatCompletionChunk(ChatCompletionChunk),
    #[serde(rename = "chat.completion")]
    ChatCompletion(ChatCompletion),
}

impl ChatCompletion {
    pub(crate) fn new(
        model: String,
        system_fingerprint: String,
        output: Option<String>,
        created: u64,
        details: Details,
        return_logprobs: bool,
        tool_calls: Option<Vec<ToolCall>>,
    ) -> Self {
        let message = match (output, tool_calls) {
            (Some(content), None) => OutputMessage::ChatMessage(TextMessage {
                role: "assistant".into(),
                content,
            }),
            (None, Some(tool_calls)) => OutputMessage::ToolCall(ToolCallMessage {
                role: "assistant".to_string(),
                tool_calls,
            }),
            (Some(output), Some(_)) => {
                warn!("Received both chat and tool call");
                OutputMessage::ChatMessage(TextMessage {
                    role: "assistant".into(),
                    content: output,
                })
            }
            (None, None) => {
                warn!("Didn't receive an answer");
                OutputMessage::ChatMessage(TextMessage {
                    role: "assistant".into(),
                    content: "".to_string(),
                })
            }
        };
        Self {
            id: String::new(),
            created,
            model,
            system_fingerprint,
            choices: vec![ChatCompletionComplete {
                index: 0,
                message,
                logprobs: return_logprobs
                    .then(|| ChatCompletionLogprobs::from((details.tokens, details.top_tokens))),
jixx's avatar
jixx committed
609
                finish_reason: details.finish_reason.format(true),
jixx's avatar
init  
jixx committed
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
            }],
            usage: Usage {
                prompt_tokens: details.prefill.len() as u32,
                completion_tokens: details.generated_tokens,
                total_tokens: details.prefill.len() as u32 + details.generated_tokens,
            },
        }
    }
}
#[derive(Clone, Serialize, ToSchema)]
pub(crate) struct ChatCompletionChunk {
    pub id: String,
    #[schema(example = "1706270978")]
    pub created: u64,
    #[schema(example = "mistralai/Mistral-7B-Instruct-v0.2")]
    pub model: String,
    pub system_fingerprint: String,
    pub choices: Vec<ChatCompletionChoice>,
jixx's avatar
jixx committed
628
    pub usage: Option<Usage>,
jixx's avatar
init  
jixx committed
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
}

#[derive(Clone, Serialize, ToSchema)]
pub(crate) struct ChatCompletionChoice {
    pub index: u32,
    pub delta: ChatCompletionDelta,
    pub logprobs: Option<ChatCompletionLogprobs>,
    pub finish_reason: Option<String>,
}

#[derive(Clone, Deserialize, ToSchema, Serialize, Debug, PartialEq)]
pub struct ToolCallDelta {
    #[schema(example = "assistant")]
    role: String,
    tool_calls: DeltaToolCall,
}

#[derive(Clone, Debug, Serialize, ToSchema)]
#[serde(untagged)]
enum ChatCompletionDelta {
    Chat(TextMessage),
    Tool(ToolCallDelta),
}

#[derive(Clone, Deserialize, Serialize, ToSchema, Debug, PartialEq)]
pub(crate) struct DeltaToolCall {
    pub index: u32,
    pub id: String,
    pub r#type: String,
    pub function: Function,
}

#[derive(Clone, Deserialize, Serialize, ToSchema, Debug, PartialEq)]
pub(crate) struct Function {
    pub name: Option<String>,
    pub arguments: String,
}

#[allow(clippy::too_many_arguments)]
impl ChatCompletionChunk {
    pub(crate) fn new(
        model: String,
        system_fingerprint: String,
        delta: Option<String>,
        tool_calls: Option<Vec<String>>,
        created: u64,
        logprobs: Option<ChatCompletionLogprobs>,
        finish_reason: Option<String>,
jixx's avatar
jixx committed
677
        usage: Option<Usage>,
jixx's avatar
init  
jixx committed
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
    ) -> Self {
        let delta = match (delta, tool_calls) {
            (Some(delta), _) => ChatCompletionDelta::Chat(TextMessage {
                role: "assistant".to_string(),
                content: delta,
            }),
            (None, Some(tool_calls)) => ChatCompletionDelta::Tool(ToolCallDelta {
                role: "assistant".to_string(),
                tool_calls: DeltaToolCall {
                    index: 0,
                    id: String::new(),
                    r#type: "function".to_string(),
                    function: Function {
                        name: None,
                        arguments: tool_calls[0].to_string(),
                    },
                },
            }),
            (None, None) => ChatCompletionDelta::Chat(TextMessage {
                role: "assistant".to_string(),
                content: "".to_string(),
            }),
        };
        Self {
            id: String::new(),
            created,
            model,
            system_fingerprint,
            choices: vec![ChatCompletionChoice {
                index: 0,
                delta,
                logprobs,
                finish_reason,
            }],
jixx's avatar
jixx committed
712
            usage,
jixx's avatar
init  
jixx committed
713
714
715
716
717
        }
    }
}

#[derive(Clone, Deserialize, ToSchema, Serialize)]
jixx's avatar
jixx committed
718
#[cfg_attr(test, derive(Debug, PartialEq, Default))]
jixx's avatar
init  
jixx committed
719
720
721
pub(crate) struct ChatRequest {
    #[schema(example = "mistralai/Mistral-7B-Instruct-v0.2")]
    /// [UNUSED] ID of the model to use. See the model endpoint compatibility table for details on which models work with the Chat API.
jixx's avatar
jixx committed
722
    pub model: Option<String>,
jixx's avatar
init  
jixx committed
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804

    /// A list of messages comprising the conversation so far.
    #[schema(example = "[{\"role\": \"user\", \"content\": \"What is Deep Learning?\"}]")]
    pub messages: Vec<Message>,

    /// Number between -2.0 and 2.0. Positive values penalize new tokens based on their existing frequency in the text so far,
    /// decreasing the model's likelihood to repeat the same line verbatim.
    #[serde(default)]
    #[schema(example = "1.0")]
    pub frequency_penalty: Option<f32>,

    /// UNUSED
    /// Modify the likelihood of specified tokens appearing in the completion. Accepts a JSON object that maps tokens
    /// (specified by their token ID in the tokenizer) to an associated bias value from -100 to 100. Mathematically,
    /// the bias is added to the logits generated by the model prior to sampling. The exact effect will vary per model,
    /// but values between -1 and 1 should decrease or increase likelihood of selection; values like -100 or 100 should
    /// result in a ban or exclusive selection of the relevant token.
    #[serde(default)]
    pub logit_bias: Option<Vec<f32>>,

    /// Whether to return log probabilities of the output tokens or not. If true, returns the log probabilities of each
    /// output token returned in the content of message.
    #[serde(default)]
    #[schema(example = "false")]
    pub logprobs: Option<bool>,

    /// An integer between 0 and 5 specifying the number of most likely tokens to return at each token position, each with
    /// an associated log probability. logprobs must be set to true if this parameter is used.
    #[serde(default)]
    #[schema(example = "5")]
    pub top_logprobs: Option<u32>,

    /// The maximum number of tokens that can be generated in the chat completion.
    #[serde(default)]
    #[schema(example = "32")]
    pub max_tokens: Option<u32>,

    /// UNUSED
    /// How many chat completion choices to generate for each input message. Note that you will be charged based on the
    /// number of generated tokens across all of the choices. Keep n as 1 to minimize costs.
    #[serde(default)]
    #[schema(nullable = true, example = "2")]
    pub n: Option<u32>,

    /// Number between -2.0 and 2.0. Positive values penalize new tokens based on whether they appear in the text so far,
    /// increasing the model's likelihood to talk about new topics
    #[serde(default)]
    #[schema(nullable = true, example = 0.1)]
    pub presence_penalty: Option<f32>,

    /// Up to 4 sequences where the API will stop generating further tokens.
    #[serde(default)]
    #[schema(nullable = true, example = "null")]
    pub stop: Option<Vec<String>>,

    #[serde(default = "bool::default")]
    pub stream: bool,

    #[schema(nullable = true, example = 42)]
    pub seed: Option<u64>,

    /// What sampling temperature to use, between 0 and 2. Higher values like 0.8 will make the output more random, while
    /// lower values like 0.2 will make it more focused and deterministic.
    ///
    /// We generally recommend altering this or `top_p` but not both.
    #[serde(default)]
    #[schema(nullable = true, example = 1.0)]
    pub temperature: Option<f32>,

    /// An alternative to sampling with temperature, called nucleus sampling, where the model considers the results of the
    /// tokens with top_p probability mass. So 0.1 means only the tokens comprising the top 10% probability mass are considered.
    #[serde(default)]
    #[schema(nullable = true, example = 0.95)]
    pub top_p: Option<f32>,

    /// A list of tools the model may call. Currently, only functions are supported as a tool. Use this to provide a list of
    /// functions the model may generate JSON inputs for.
    #[serde(default)]
    #[schema(nullable = true, example = "null")]
    pub tools: Option<Vec<Tool>>,

    /// A prompt to be appended before the tools
jixx's avatar
jixx committed
805
    #[serde(default)]
jixx's avatar
init  
jixx committed
806
807
    #[schema(
        nullable = true,
jixx's avatar
jixx committed
808
        example = "Given the functions available, please respond with a JSON for a function call with its proper arguments that best answers the given prompt. Respond in the format {name: function name, parameters: dictionary of argument name and its value}.Do not use variables."
jixx's avatar
init  
jixx committed
809
810
811
812
813
814
    )]
    pub tool_prompt: Option<String>,

    /// A specific tool to use. If not provided, the model will default to use any of the tools provided in the tools parameter.
    #[serde(default)]
    #[schema(nullable = true, example = "null")]
jixx's avatar
jixx committed
815
    pub tool_choice: ToolChoice,
jixx's avatar
init  
jixx committed
816
817
818
819
820
821
822

    /// Response format constraints for the generation.
    ///
    /// NOTE: A request can use `response_format` OR `tools` but not both.
    #[serde(default)]
    #[schema(nullable = true, default = "null", example = "null")]
    pub response_format: Option<GrammarType>,
jixx's avatar
jixx committed
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914

    /// A guideline to be used in the chat_template
    #[serde(default)]
    #[schema(nullable = true, default = "null", example = "null")]
    pub guideline: Option<String>,

    /// Options for streaming response. Only set this when you set stream: true.
    #[serde(default)]
    #[schema(nullable = true, example = "null")]
    pub stream_options: Option<StreamOptions>,
}

impl ChatRequest {
    fn try_into_generate(self, infer: &Infer) -> Result<(GenerateRequest, bool), InferError> {
        let ChatRequest {
            model,
            max_tokens,
            messages,
            seed,
            stop,
            stream,
            tools,
            tool_choice,
            tool_prompt,
            temperature,
            response_format,
            guideline,
            presence_penalty,
            frequency_penalty,
            top_p,
            top_logprobs,
            ..
        } = self;

        let repetition_penalty = presence_penalty.map(|x| x + 2.0);
        let max_new_tokens = max_tokens.or(Some(100));
        let tool_prompt = tool_prompt
            .filter(|s| !s.is_empty())
            .unwrap_or_else(default_tool_prompt);
        let stop = stop.unwrap_or_default();
        // enable greedy only when temperature is 0
        let (do_sample, temperature) = match temperature {
            Some(temperature) if temperature == 0.0 => (false, None),
            other => (true, other),
        };
        let (inputs, grammar, using_tools) = prepare_chat_input(
            infer,
            response_format,
            tools,
            tool_choice,
            &tool_prompt,
            guideline,
            messages,
        )?;

        Ok((
            GenerateRequest {
                inputs: inputs.to_string(),
                add_special_tokens: false,
                parameters: GenerateParameters {
                    best_of: None,
                    temperature,
                    repetition_penalty,
                    frequency_penalty,
                    top_k: None,
                    top_p,
                    typical_p: None,
                    do_sample,
                    max_new_tokens,
                    return_full_text: None,
                    stop,
                    truncate: None,
                    watermark: false,
                    details: true,
                    decoder_input_details: !stream,
                    seed,
                    top_n_tokens: top_logprobs,
                    grammar,
                    adapter_id: model.filter(|m| *m != "tgi").map(String::from),
                },
            },
            using_tools,
        ))
    }
}

#[derive(Clone, Deserialize, ToSchema, Serialize)]
#[cfg_attr(test, derive(Debug, PartialEq))]
struct StreamOptions {
    /// If set, an additional chunk will be streamed before the data: [DONE] message. The usage field on this chunk shows the token usage statistics for the entire request, and the choices field will always be an empty array. All other chunks will also include a usage field, but with a null value.
    #[schema(example = "true")]
    include_usage: bool,
jixx's avatar
init  
jixx committed
915
916
}

jixx's avatar
jixx committed
917
918
pub fn default_tool_prompt() -> String {
    "\nGiven the functions available, please respond with a JSON for a function call with its proper arguments that best answers the given prompt. Respond in the format {name: function name, parameters: dictionary of argument name and its value}.Do not use variables.\n".to_string()
jixx's avatar
init  
jixx committed
919
920
921
}

#[derive(Clone, Debug, Deserialize, PartialEq, Serialize, ToSchema)]
jixx's avatar
jixx committed
922
923
#[schema(example = "auto")]
/// Controls which (if any) tool is called by the model.
jixx's avatar
init  
jixx committed
924
pub enum ToolType {
jixx's avatar
jixx committed
925
926
    /// Means the model can pick between generating a message or calling one or more tools.
    #[schema(rename = "auto")]
jixx's avatar
init  
jixx committed
927
    OneOf,
jixx's avatar
jixx committed
928
929
930
931
932
933
    /// Means the model will not call any tool and instead generates a message.
    #[schema(rename = "none")]
    NoTool,
    /// Forces the model to call a specific tool.
    #[schema(rename = "function")]
    Function(FunctionName),
jixx's avatar
init  
jixx committed
934
935
}

jixx's avatar
jixx committed
936
#[derive(Debug, Clone, PartialEq, Serialize, Deserialize, ToSchema)]
jixx's avatar
init  
jixx committed
937
938
939
940
pub struct FunctionName {
    pub name: String,
}

jixx's avatar
jixx committed
941
#[derive(Debug, Clone, PartialEq, Serialize, Deserialize, Default, ToSchema)]
jixx's avatar
init  
jixx committed
942
943
944
945
946
947
#[serde(from = "ToolTypeDeserializer")]
pub struct ToolChoice(pub Option<ToolType>);

#[derive(Deserialize)]
#[serde(untagged)]
enum ToolTypeDeserializer {
jixx's avatar
jixx committed
948
949
950
    Null,
    String(String),
    ToolType(ToolType),
jixx's avatar
init  
jixx committed
951
952
953
954
955
}

impl From<ToolTypeDeserializer> for ToolChoice {
    fn from(value: ToolTypeDeserializer) -> Self {
        match value {
jixx's avatar
jixx committed
956
957
958
959
960
            ToolTypeDeserializer::Null => ToolChoice(None),
            ToolTypeDeserializer::String(s) => match s.as_str() {
                "none" => ToolChoice(Some(ToolType::NoTool)),
                "auto" => ToolChoice(Some(ToolType::OneOf)),
                _ => ToolChoice(Some(ToolType::Function(FunctionName { name: s }))),
jixx's avatar
init  
jixx committed
961
            },
jixx's avatar
jixx committed
962
            ToolTypeDeserializer::ToolType(tool_type) => ToolChoice(Some(tool_type)),
jixx's avatar
init  
jixx committed
963
964
965
966
967
        }
    }
}

#[derive(Debug, Deserialize, Serialize, ToSchema, PartialEq)]
jixx's avatar
jixx committed
968
pub struct JsonSchemaTool {
jixx's avatar
init  
jixx committed
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
    #[serde(flatten)]
    functions_map: FunctionsMap,
    properties: Properties,
}

#[derive(Debug, Serialize, Deserialize, PartialEq)]
struct FunctionsMap {
    #[serde(rename = "$functions")]
    functions: std::collections::HashMap<String, serde_json::Value>,
}

#[derive(Debug, Serialize, Deserialize, PartialEq)]
struct FunctionRef {
    #[serde(rename = "$ref")]
    ref_path: String,
}

#[derive(Debug, Serialize, Deserialize, PartialEq)]
struct Properties {
    #[serde(serialize_with = "serialize_function")]
    function: Vec<FunctionRef>,
}

fn serialize_function<S>(functions: &Vec<FunctionRef>, serializer: S) -> Result<S::Ok, S::Error>
where
    S: serde::Serializer,
{
    use serde::ser::SerializeStruct;
    let mut state = serializer.serialize_struct("Function", 1)?;
    state.serialize_field("anyOf", functions)?;
    state.end()
}

#[derive(Clone, Debug, Deserialize, Serialize, ToSchema, Default, PartialEq)]
pub(crate) struct FunctionDefinition {
    #[serde(default)]
    pub description: Option<String>,
    pub name: String,
    #[serde(alias = "parameters")]
    pub arguments: serde_json::Value,
}

#[derive(Clone, Debug, Deserialize, Serialize, ToSchema)]
jixx's avatar
jixx committed
1012
#[cfg_attr(test, derive(PartialEq))]
jixx's avatar
init  
jixx committed
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
pub(crate) struct Tool {
    // The type of the tool. Currently, only 'function' is supported.
    #[schema(example = "function")]
    pub r#type: String,
    // Grab the tool as generic JSON for debugging purposes.
    pub function: FunctionDefinition,
}

#[derive(Clone, Serialize, Deserialize, Default)]
pub(crate) struct ChatTemplateInputs<'a> {
    messages: Vec<TextMessage>,
    bos_token: Option<&'a str>,
    eos_token: Option<&'a str>,
    add_generation_prompt: bool,
jixx's avatar
jixx committed
1027
1028
    tools: Option<Vec<Tool>>,
    guideline: Option<&'a str>,
jixx's avatar
init  
jixx committed
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
}

#[derive(Clone, Deserialize, Serialize, ToSchema, Default, Debug, PartialEq)]
pub(crate) struct ToolCall {
    pub id: String,
    pub r#type: String,
    pub function: FunctionDefinition,
}

#[derive(Clone, Deserialize, ToSchema, Serialize, Debug, PartialEq)]
pub struct Url {
    url: String,
}

#[derive(Clone, Deserialize, ToSchema, Serialize, Debug, PartialEq)]
#[serde(tag = "type")]
#[serde(rename_all = "snake_case")]
pub enum MessageChunk {
    Text { text: String },
    ImageUrl { image_url: Url },
}

#[derive(Clone, Deserialize, ToSchema, Serialize, Debug, PartialEq)]
pub struct Message {
    #[schema(example = "user")]
    role: String,
    #[schema(example = "My name is David and I")]
    pub content: MessageContent,
    #[serde(default, skip_serializing_if = "Option::is_none")]
    #[schema(example = "\"David\"")]
    name: Option<String>,
}

#[derive(Clone, Deserialize, Serialize, ToSchema, Debug, PartialEq)]
#[serde(untagged)]
pub enum MessageContent {
    SingleText(String),
    MultipleChunks(Vec<MessageChunk>),
}

// Pushing a chunk to a single text message will convert it to a multiple chunks message
impl MessageContent {
    pub fn push(&mut self, chunk: MessageChunk) {
        match self {
            MessageContent::SingleText(text) => {
jixx's avatar
jixx committed
1074
1075
1076
1077
                *self = MessageContent::MultipleChunks(vec![
                    MessageChunk::Text { text: text.clone() },
                    chunk,
                ]);
jixx's avatar
init  
jixx committed
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
            }
            MessageContent::MultipleChunks(chunks) => {
                chunks.push(chunk);
            }
        }
    }
}

#[derive(Clone, Deserialize, ToSchema, Serialize, Debug, PartialEq)]
pub struct TextMessage {
    #[schema(example = "user")]
    pub role: String,
    #[schema(example = "My name is David and I")]
    pub content: String,
}

impl From<Message> for TextMessage {
    fn from(value: Message) -> Self {
        TextMessage {
            role: value.role,
            content: match value.content {
                MessageContent::SingleText(text) => text,
                MessageContent::MultipleChunks(chunks) => chunks
                    .into_iter()
                    .map(|chunk| match chunk {
                        MessageChunk::Text { text } => text,
                        MessageChunk::ImageUrl { image_url } => format!("![]({})", image_url.url),
                    })
                    .collect::<Vec<_>>()
                    .join(""),
            },
        }
    }
}

#[derive(Clone, Deserialize, ToSchema, Serialize, Debug, PartialEq)]
pub struct ToolCallMessage {
    #[schema(example = "assistant")]
    role: String,
    tool_calls: Vec<ToolCall>,
}

#[derive(Clone, Deserialize, ToSchema, Serialize, Debug, PartialEq)]
#[serde(untagged)]
pub(crate) enum OutputMessage {
    ChatMessage(TextMessage),
    ToolCall(ToolCallMessage),
}

#[derive(Clone, Debug, Deserialize, ToSchema)]
pub(crate) struct GenerateRequest {
    #[schema(example = "My name is Olivier and I")]
    pub inputs: String,
    #[serde(default = "default_parameters")]
    pub parameters: GenerateParameters,
jixx's avatar
jixx committed
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142

    /// This is used internally because some requests
    /// already contain the templated input therefore
    /// we shouldn't add the special tokens.
    #[serde(default = "default_true", skip)]
    pub add_special_tokens: bool,
}

fn default_true() -> bool {
    true
jixx's avatar
init  
jixx committed
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
}

#[derive(Clone, Debug, Deserialize, ToSchema)]
pub(crate) struct CompatGenerateRequest {
    #[schema(example = "My name is Olivier and I")]
    pub inputs: String,
    #[serde(default = "default_parameters")]
    pub parameters: GenerateParameters,
    #[serde(default)]
    #[schema(default = "false")]
    pub stream: bool,
}

impl From<CompatGenerateRequest> for GenerateRequest {
    fn from(req: CompatGenerateRequest) -> Self {
        Self {
            inputs: req.inputs,
jixx's avatar
jixx committed
1160
            add_special_tokens: true,
jixx's avatar
init  
jixx committed
1161
1162
1163
1164
1165
1166
1167
1168
            parameters: req.parameters,
        }
    }
}

#[derive(Debug, Serialize, ToSchema)]
pub struct PrefillToken {
    #[schema(example = 0)]
jixx's avatar
jixx committed
1169
    pub id: u32,
jixx's avatar
init  
jixx committed
1170
    #[schema(example = "test")]
jixx's avatar
jixx committed
1171
    pub text: String,
jixx's avatar
init  
jixx committed
1172
    #[schema(nullable = true, example = - 0.34)]
jixx's avatar
jixx committed
1173
    pub logprob: f32,
jixx's avatar
init  
jixx committed
1174
1175
1176
1177
1178
}

#[derive(Debug, Serialize, ToSchema, Clone)]
pub struct Token {
    #[schema(example = 0)]
jixx's avatar
jixx committed
1179
    pub id: u32,
jixx's avatar
init  
jixx committed
1180
    #[schema(example = "test")]
jixx's avatar
jixx committed
1181
    pub text: String,
jixx's avatar
init  
jixx committed
1182
    #[schema(nullable = true, example = - 0.34)]
jixx's avatar
jixx committed
1183
    pub logprob: f32,
jixx's avatar
init  
jixx committed
1184
    #[schema(example = "false")]
jixx's avatar
jixx committed
1185
    pub special: bool,
jixx's avatar
init  
jixx committed
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
}

#[derive(Debug, Serialize, ToSchema)]
pub struct SimpleToken {
    #[schema(example = 0)]
    id: u32,
    #[schema(example = "test")]
    text: String,
    #[schema(example = 0)]
    start: usize,
    #[schema(example = 2)]
    stop: usize,
}

#[derive(Debug, Serialize, ToSchema)]
#[serde(rename_all(serialize = "snake_case"))]
#[schema(example = "Length")]
jixx's avatar
jixx committed
1203
pub enum FinishReason {
jixx's avatar
init  
jixx committed
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
    #[schema(rename = "length")]
    Length,
    #[serde(rename = "eos_token")]
    #[schema(rename = "eos_token")]
    EndOfSequenceToken,
    #[schema(rename = "stop_sequence")]
    StopSequence,
}

impl std::fmt::Display for FinishReason {
    fn fmt(&self, f: &mut std::fmt::Formatter<'_>) -> std::fmt::Result {
        match self {
            FinishReason::Length => write!(f, "length"),
            FinishReason::EndOfSequenceToken => write!(f, "eos_token"),
            FinishReason::StopSequence => write!(f, "stop_sequence"),
        }
    }
}

jixx's avatar
jixx committed
1223
1224
1225
1226
1227
1228
1229
1230
1231
impl FinishReason {
    pub fn format(&self, use_stop: bool) -> String {
        match self {
            FinishReason::EndOfSequenceToken if use_stop => "stop".to_string(),
            _ => self.to_string(),
        }
    }
}

jixx's avatar
init  
jixx committed
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
#[derive(Serialize, ToSchema)]
pub(crate) struct BestOfSequence {
    #[schema(example = "test")]
    pub generated_text: String,
    #[schema(example = "length")]
    pub finish_reason: FinishReason,
    #[schema(example = 1)]
    pub generated_tokens: u32,
    #[schema(nullable = true, example = 42)]
    pub seed: Option<u64>,
    pub prefill: Vec<PrefillToken>,
    pub tokens: Vec<Token>,
    #[serde(skip_serializing_if = "Vec::is_empty")]
    pub top_tokens: Vec<Vec<Token>>,
}

#[derive(Serialize, ToSchema)]
pub(crate) struct Details {
    #[schema(example = "length")]
    pub finish_reason: FinishReason,
    #[schema(example = 1)]
    pub generated_tokens: u32,
    #[schema(nullable = true, example = 42)]
    pub seed: Option<u64>,
    pub prefill: Vec<PrefillToken>,
    pub tokens: Vec<Token>,
    #[serde(skip_serializing_if = "Option::is_none")]
    pub best_of_sequences: Option<Vec<BestOfSequence>>,
    #[serde(skip_serializing_if = "Vec::is_empty")]
    pub top_tokens: Vec<Vec<Token>>,
}

#[derive(Serialize, ToSchema)]
pub(crate) struct GenerateResponse {
    #[schema(example = "test")]
    pub generated_text: String,
    #[serde(skip_serializing_if = "Option::is_none")]
    pub details: Option<Details>,
}

jixx's avatar
jixx committed
1272
1273
1274
1275
1276
1277
#[derive(Serialize, ToSchema)]
pub(crate) struct ChatTokenizeResponse {
    pub(crate) tokenize_response: TokenizeResponse,
    pub(crate) templated_text: String,
}

jixx's avatar
init  
jixx committed
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
#[derive(Serialize, ToSchema)]
#[serde(transparent)]
pub(crate) struct TokenizeResponse(Vec<SimpleToken>);

#[derive(Serialize, ToSchema)]
pub(crate) struct StreamDetails {
    #[schema(example = "length")]
    pub finish_reason: FinishReason,
    #[schema(example = 1)]
    pub generated_tokens: u32,
    #[schema(nullable = true, example = 42)]
    pub seed: Option<u64>,
jixx's avatar
jixx committed
1290
1291
    #[schema(example = 1)]
    pub input_length: u32,
jixx's avatar
init  
jixx committed
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
}

#[derive(Serialize, ToSchema)]
pub(crate) struct StreamResponse {
    pub index: u32,
    pub token: Token,
    #[serde(skip_serializing_if = "Vec::is_empty")]
    pub top_tokens: Vec<Token>,
    #[schema(nullable = true, default = "null", example = "test")]
    pub generated_text: Option<String>,
    #[schema(nullable = true, default = "null")]
    pub details: Option<StreamDetails>,
}

#[derive(Serialize, ToSchema)]
pub(crate) struct ErrorResponse {
    pub error: String,
    pub error_type: String,
}

jixx's avatar
jixx committed
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
#[derive(Serialize, Deserialize, ToSchema)]
pub(crate) struct ModelInfo {
    #[schema(example = "gpt2")]
    pub id: String,
    #[schema(example = "model")]
    pub object: String,
    #[schema(example = 1686935002)]
    pub created: u64,
    #[schema(example = "openai")]
    pub owned_by: String,
}

#[derive(Serialize, Deserialize, ToSchema)]
pub(crate) struct ModelsInfo {
    #[schema(example = "list")]
    pub object: String,
    pub data: Vec<ModelInfo>,
}

impl Default for ModelsInfo {
    fn default() -> Self {
        ModelsInfo {
            object: "list".to_string(),
            data: Vec::new(),
        }
    }
}

jixx's avatar
init  
jixx committed
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
#[cfg(test)]
mod tests {
    use super::*;
    use serde_json::json;
    use tokenizers::Tokenizer;

    pub(crate) async fn get_tokenizer() -> Tokenizer {
        let api = hf_hub::api::sync::Api::new().unwrap();
        let repo = api.model("gpt2".to_string());
        let filename = repo.get("tokenizer.json").unwrap();
        Tokenizer::from_file(filename).unwrap()
    }

    #[test]
    fn test_hub_nested_tokens_tokenizer_config() {
        // this is a subset of the tokenizer.json file
        // in this case we expect the tokens to be encoded as simple strings
        let json_content = r#"{
            "chat_template": "test",
            "bos_token": "<|begin▁of▁sentence|>",
            "eos_token": "<|end▁of▁sentence|>"
        }"#;

        let config: HubTokenizerConfig = serde_json::from_str(json_content).unwrap();

        // check that we successfully parsed the tokens
        assert_eq!(
            config.chat_template,
            Some(ChatTemplateVersions::Single("test".to_string()))
        );
        assert_eq!(
            config.bos_token,
            Some(TokenizerConfigToken::String(
                "<|begin▁of▁sentence|>".to_string()
            ))
        );
        assert_eq!(
            config.eos_token,
            Some(TokenizerConfigToken::String(
                "<|end▁of▁sentence|>".to_string()
            ))
        );

        // in this case we expect the tokens to be encoded as structured tokens
        // we want the content of the structured token
        let json_content = r#"{
            "chat_template": "test",
            "bos_token": {
              "__type": "AddedToken",
              "content": "<|begin▁of▁sentence|>",
              "lstrip": false,
              "normalized": true,
              "rstrip": false,
              "single_word": false
            },
            "eos_token": {
              "__type": "AddedToken",
              "content": "<|end▁of▁sentence|>",
              "lstrip": false,
              "normalized": true,
              "rstrip": false,
              "single_word": false
            }
        }"#;

        let config: HubTokenizerConfig = serde_json::from_str(json_content).unwrap();

        // check that we successfully parsed the tokens
        assert_eq!(
            config.chat_template,
            Some(ChatTemplateVersions::Single("test".to_string()))
        );
        assert_eq!(
            config.bos_token,
            Some(TokenizerConfigToken::Object {
                content: "<|begin▁of▁sentence|>".to_string()
            })
        );
        assert_eq!(
            config.eos_token,
            Some(TokenizerConfigToken::Object {
                content: "<|end▁of▁sentence|>".to_string()
            })
        );
    }

    #[test]
    fn test_chat_simple_string() {
        let json = json!({
            "model": "",
            "messages": [{
                "role": "user",
                "content": "What is Deep Learning?"
            }]
        });
        let request: ChatRequest = serde_json::from_str(json.to_string().as_str()).unwrap();

        assert_eq!(
            request.messages[0],
            Message {
                role: "user".to_string(),
                content: MessageContent::SingleText("What is Deep Learning?".to_string()),
                name: None
            }
        );
    }

jixx's avatar
jixx committed
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
    #[test]
    fn test_message_content_append() {
        let mut content = MessageContent::SingleText("Initial text".to_string());
        let chunk = MessageChunk::Text {
            text: "Additional text".to_string(),
        };

        content.push(chunk);

        match content {
            MessageContent::MultipleChunks(chunks) => {
                assert_eq!(chunks.len(), 2);
                assert_eq!(
                    chunks[0],
                    MessageChunk::Text {
                        text: "Initial text".to_string()
                    }
                );
                assert_eq!(
                    chunks[1],
                    MessageChunk::Text {
                        text: "Additional text".to_string()
                    }
                );
            }
            _ => panic!("Expected MultipleChunks, but got a different variant"),
        }
    }

jixx's avatar
init  
jixx committed
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
    #[test]
    fn test_chat_request() {
        let json = json!({
            "model": "",
            "messages": [{
                "role": "user",
                "content": [
                    {"type": "text", "text": "Whats in this image?"},
                    {"type": "image_url", "image_url": {"url": "https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/transformers/rabbit.png"}},
                ]
            }]
        });
        let request: ChatRequest = serde_json::from_str(json.to_string().as_str()).unwrap();

        assert_eq!(
            request.messages[0],
            Message{
                role: "user".to_string(),
                content: MessageContent::MultipleChunks(vec![
                    MessageChunk::Text { text: "Whats in this image?".to_string() },
                    MessageChunk::ImageUrl { image_url: Url { url: "https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/transformers/rabbit.png".to_string() }},
                ]),
                name: None
            }
        );
    }

    #[test]
    fn text_message_convert() {
        let message = Message{
                role: "user".to_string(),
                content: MessageContent::MultipleChunks(vec![
                    MessageChunk::Text { text: "Whats in this image?".to_string() },
                    MessageChunk::ImageUrl { image_url: Url { url: "https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/transformers/rabbit.png".to_string() } }
                ]),
                name: None
            };
        let textmsg: TextMessage = message.into();
        assert_eq!(textmsg.content, "Whats in this image?![](https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/transformers/rabbit.png)");
    }
jixx's avatar
jixx committed
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536

    #[test]
    fn test_chat_stream_options() {
        let json = json!({
            "model": "",
            "stream_options": {"include_usage": true},
            "messages": [{
                "role": "user",
                "content": "Hello"
            }]
        });
        let request: ChatRequest = serde_json::from_str(json.to_string().as_str()).unwrap();

        assert!(matches!(
            request.stream_options,
            Some(StreamOptions {
                include_usage: true
            })
        ));
    }

jixx's avatar
init  
jixx committed
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
    #[test]
    fn openai_output() {
        let message = OutputMessage::ChatMessage(TextMessage {
            role: "assistant".to_string(),
            content: "This is the answer".to_string(),
        });
        let serialized = serde_json::to_string(&message).unwrap();
        assert_eq!(
            serialized,
            r#"{"role":"assistant","content":"This is the answer"}"#
        );

        let message = OutputMessage::ToolCall(ToolCallMessage {
            role: "assistant".to_string(),
            tool_calls: vec![ToolCall {
                id: "0".to_string(),
                r#type: "function".to_string(),
                function: FunctionDefinition {
                    description: None,
                    name: "myfn".to_string(),
                    arguments: json!({
                        "format": "csv"
                    }),
                },
            }],
        });
        let serialized = serde_json::to_string(&message).unwrap();
        assert_eq!(
            serialized,
            r#"{"role":"assistant","tool_calls":[{"id":"0","type":"function","function":{"description":null,"name":"myfn","arguments":{"format":"csv"}}}]}"#
        );
    }
}