mod.rs 12.5 KB
Newer Older
jixx's avatar
jixx committed
1
2
3
// pub(crate) mod v2;
mod chat_template;
pub mod tool_grammar;
jixx's avatar
init  
jixx committed
4
5

use crate::validation::{ValidGenerateRequest, Validation, ValidationError};
jixx's avatar
jixx committed
6
use crate::Tool;
jixx's avatar
init  
jixx committed
7
use crate::{
jixx's avatar
jixx committed
8
9
    ChatTemplateVersions, FinishReason, GenerateRequest, HubProcessorConfig, HubTokenizerConfig,
    Message, PrefillToken, Token,
jixx's avatar
init  
jixx committed
10
};
jixx's avatar
jixx committed
11
12
13
use async_stream::stream;
use async_trait::async_trait;
use chat_template::ChatTemplate;
jixx's avatar
init  
jixx committed
14
use futures::future::try_join_all;
jixx's avatar
jixx committed
15
16
17
use futures::Stream;
use minijinja::ErrorKind;
use std::sync::atomic::{AtomicBool, Ordering};
jixx's avatar
init  
jixx committed
18
19
20
21
22
23
24
25
use std::sync::Arc;
use thiserror::Error;
use tokio::sync::{OwnedSemaphorePermit, Semaphore, TryAcquireError};
use tokio::time::Instant;
use tokio_stream::wrappers::UnboundedReceiverStream;
use tokio_stream::StreamExt;
use tracing::instrument;

jixx's avatar
jixx committed
26
27
#[async_trait]
pub trait Backend {
jixx's avatar
init  
jixx committed
28
29
30
    fn schedule(
        &self,
        request: ValidGenerateRequest,
jixx's avatar
jixx committed
31
32
33
    ) -> Result<UnboundedReceiverStream<Result<InferStreamResponse, InferError>>, InferError>;

    async fn health(&self, current_health: bool) -> bool;
jixx's avatar
init  
jixx committed
34
35
36
37
38
39
40
}

/// Inference struct
#[derive(Clone)]
pub struct Infer {
    /// Validation
    validation: Validation,
jixx's avatar
jixx committed
41
42
    /// Request backend
    backend: Arc<dyn Backend + Send + Sync>,
jixx's avatar
init  
jixx committed
43
44
45
46
    /// Chat template
    chat_template: Option<ChatTemplate>,
    /// Inference limit
    limit_concurrent_requests: Arc<Semaphore>,
jixx's avatar
jixx committed
47
48
    /// Backend health
    backend_health: Arc<AtomicBool>,
jixx's avatar
init  
jixx committed
49
50
51
52
53
}

impl Infer {
    #[allow(clippy::too_many_arguments)]
    pub(crate) fn new(
jixx's avatar
jixx committed
54
        backend: impl Backend + Send + Sync + 'static,
jixx's avatar
init  
jixx committed
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
        validation: Validation,
        max_concurrent_requests: usize,
        tokenizer_config: HubTokenizerConfig,
        processor_config: HubProcessorConfig,
    ) -> Self {
        let chat_template = tokenizer_config
            .chat_template
            .or(processor_config.chat_template)
            .and_then(|t| match t {
                ChatTemplateVersions::Single(template) => Some(template),
                ChatTemplateVersions::Multiple(templates) => templates
                    .into_iter()
                    .find(|t| t.name == "default")
                    .map(|t| t.template),
            })
            .map(|t| ChatTemplate::new(t, tokenizer_config.bos_token, tokenizer_config.eos_token));

        // Inference limit with a semaphore
        let semaphore = Arc::new(Semaphore::new(max_concurrent_requests));

jixx's avatar
jixx committed
75
76
77
        // Backend health
        let backend_health = Arc::new(AtomicBool::new(false));

jixx's avatar
init  
jixx committed
78
79
        Self {
            validation,
jixx's avatar
jixx committed
80
            backend: Arc::new(backend),
jixx's avatar
init  
jixx committed
81
82
            chat_template,
            limit_concurrent_requests: semaphore,
jixx's avatar
jixx committed
83
            backend_health,
jixx's avatar
init  
jixx committed
84
85
86
87
88
        }
    }

    /// Add a new request to the queue and return a stream of InferStreamResponse
    #[instrument(skip_all)]
jixx's avatar
jixx committed
89
90
    pub(crate) async fn generate_stream<'a>(
        &'a self,
jixx's avatar
init  
jixx committed
91
        request: GenerateRequest,
jixx's avatar
jixx committed
92
93
94
95
96
97
98
99
    ) -> Result<
        (
            OwnedSemaphorePermit,
            u32, // input_length
            impl Stream<Item = Result<InferStreamResponse, InferError>> + 'a,
        ),
        InferError,
    > {
jixx's avatar
init  
jixx committed
100
101
102
103
104
105
        // Limit concurrent requests by acquiring a permit from the semaphore
        let permit = self
            .clone()
            .limit_concurrent_requests
            .try_acquire_owned()
            .map_err(|err| {
jixx's avatar
jixx committed
106
                metrics::counter!("tgi_request_failure", "err" => "overloaded").increment(1);
jixx's avatar
init  
jixx committed
107
108
109
110
111
112
                tracing::error!("{err}");
                err
            })?;

        // Validate request
        let valid_request = self.validation.validate(request).await.map_err(|err| {
jixx's avatar
jixx committed
113
            metrics::counter!("tgi_request_failure", "err" => "validation").increment(1);
jixx's avatar
init  
jixx committed
114
115
116
117
            tracing::error!("{err}");
            err
        })?;

jixx's avatar
jixx committed
118
119
120
121
122
123
124
125
126
127
128
129
130
        let input_length = valid_request.input_length;
        let mut generation_stream = self.backend.schedule(valid_request)?;

        // Wrap generation stream to update the backend health if the stream contains an error
        let final_stream = stream! {
            while let Some(response) = generation_stream.next().await {
                yield response.inspect_err(|_err| {
                    self.backend_health.store(false, Ordering::SeqCst);
                })
            }
        };

        Ok((permit, input_length, final_stream))
jixx's avatar
init  
jixx committed
131
132
133
134
135
136
137
138
139
140
    }

    /// Tokenizer the input
    #[instrument(skip_all)]
    pub(crate) async fn tokenize(
        &self,
        request: GenerateRequest,
    ) -> Result<Option<tokenizers::Encoding>, InferError> {
        // Tokenize request
        let inputs = request.inputs;
jixx's avatar
jixx committed
141
        let add_special_tokens = request.add_special_tokens;
jixx's avatar
init  
jixx committed
142
143
144
        let truncate = request.parameters.truncate;
        let encoding = self
            .validation
jixx's avatar
jixx committed
145
            .tokenize(inputs, add_special_tokens, truncate)
jixx's avatar
init  
jixx committed
146
147
148
149
150
151
152
153
154
155
156
157
158
159
            .await
            .map_err(|err| {
                tracing::error!("Tokenization {err}");
                err
            })?;

        // Return Encoding
        Ok(encoding.map(|(encoding, _)| encoding))
    }

    /// Apply the chat template to the chat request
    #[instrument(skip_all)]
    pub(crate) fn apply_chat_template(
        &self,
jixx's avatar
jixx committed
160
        guideline: Option<String>,
jixx's avatar
init  
jixx committed
161
        messages: Vec<Message>,
jixx's avatar
jixx committed
162
        tools_and_prompt: Option<(Vec<Tool>, String)>,
jixx's avatar
init  
jixx committed
163
164
165
166
    ) -> Result<String, InferError> {
        self.chat_template
            .as_ref()
            .ok_or_else(|| InferError::TemplateError(ErrorKind::TemplateNotFound.into()))?
jixx's avatar
jixx committed
167
            .apply(guideline.as_deref(), messages, tools_and_prompt)
jixx's avatar
init  
jixx committed
168
            .map_err(|e| {
jixx's avatar
jixx committed
169
                metrics::counter!("tgi_request_failure", "err" => "template").increment(1);
jixx's avatar
init  
jixx committed
170
171
172
173
174
175
176
177
178
179
180
181
182
183
                tracing::error!("{e}");
                e
            })
    }

    /// Add a new request to the queue and return a InferResponse
    #[instrument(skip_all)]
    pub(crate) async fn generate(
        &self,
        request: GenerateRequest,
    ) -> Result<InferResponse, InferError> {
        let use_top_tokens = request.parameters.top_n_tokens.is_some_and(|x| x > 0);

        // Create stream and keep semaphore permit as long as generate lives
jixx's avatar
jixx committed
184
        let (_permit, _input_length, stream) = self.generate_stream(request).await?;
jixx's avatar
init  
jixx committed
185
186
187
188
189
190
191
192
193

        // Return values
        let mut result_prefill = Vec::new();
        let mut result_tokens = Vec::new();
        let mut result_top_tokens = Vec::new();
        let mut result_generated_text = None;
        let mut result_start = None;
        let mut result_queued = None;

jixx's avatar
jixx committed
194
195
        let mut stream = Box::pin(stream);

jixx's avatar
init  
jixx committed
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
        // Iterate on stream
        while let Some(response) = stream.next().await {
            match response? {
                // Add prefill tokens
                InferStreamResponse::Prefill(prefill_tokens) => {
                    result_prefill = prefill_tokens;
                }
                // Push last token
                InferStreamResponse::Intermediate { token, top_tokens } => {
                    result_tokens.push(token);
                    result_top_tokens.push(top_tokens);
                }
                // Final message
                // Set return values
                InferStreamResponse::End {
                    token,
                    generated_text,
                    start,
                    queued,
                    top_tokens,
                } => {
                    result_tokens.push(token);
                    result_top_tokens.push(top_tokens);
                    result_generated_text = Some(generated_text);
                    result_start = Some(start);
                    result_queued = Some(queued)
                }
            }
        }

        // Check that we received a `InferStreamResponse::End` message
        if let (Some(generated_text), Some(queued), Some(start)) =
            (result_generated_text, result_queued, result_start)
        {
            Ok(InferResponse {
                prefill: result_prefill,
                _input_length,
                tokens: result_tokens,
                generated_text,
                queued,
                start,
                top_tokens: if use_top_tokens {
                    result_top_tokens
                } else {
                    Vec::new()
                },
            })
        } else {
            let err = InferError::IncompleteGeneration;
jixx's avatar
jixx committed
245
            metrics::counter!("tgi_request_failure", "err" => "incomplete").increment(1);
jixx's avatar
init  
jixx committed
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
            tracing::error!("{err}");
            Err(err)
        }
    }
    /// Add best_of new requests to the queue and return a InferResponse of the sequence with
    /// the highest log probability per token
    #[instrument(skip(self, request))]
    pub(crate) async fn generate_best_of(
        &self,
        request: GenerateRequest,
        best_of: usize,
    ) -> Result<(InferResponse, Vec<InferResponse>), InferError> {
        // validate  best_of parameter separately
        let best_of = self.validation.validate_best_of(best_of)?;

        // create multiple generate requests
        let mut infer_responses: Vec<InferResponse> =
            try_join_all((0..best_of).map(|_| self.generate(request.clone()))).await?;

        // get the sequence with the highest log probability per token
        let mut max_index = 0;
        let mut max_logprob: f32 = f32::MIN;

        for (i, response) in infer_responses.iter().enumerate() {
            // mean logprobs of the generated tokens
            let sequence_logprob = response
                .tokens
                .iter()
                .map(|token| token.logprob)
                .sum::<f32>()
                / response.tokens.len() as f32;

            // set best sequence
            if sequence_logprob > max_logprob {
                max_index = i;
                max_logprob = sequence_logprob;
            }
        }
        let best_response = infer_responses.remove(max_index);
        Ok((best_response, infer_responses))
    }

jixx's avatar
jixx committed
288
289
290
291
292
293
294
295
    #[instrument(skip(self))]
    pub(crate) async fn health(&self) -> bool {
        let health = self
            .backend
            .health(self.backend_health.load(Ordering::SeqCst))
            .await;
        self.backend_health.store(health, Ordering::SeqCst);
        health
jixx's avatar
init  
jixx committed
296
297
298
299
    }
}

#[derive(Debug)]
jixx's avatar
jixx committed
300
301
302
303
304
pub struct GeneratedText {
    pub text: String,
    pub generated_tokens: u32,
    pub finish_reason: FinishReason,
    pub seed: Option<u64>,
jixx's avatar
init  
jixx committed
305
306
307
}

#[derive(Debug)]
jixx's avatar
jixx committed
308
pub enum InferStreamResponse {
jixx's avatar
init  
jixx committed
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
    // Optional first message
    Prefill(Vec<PrefillToken>),
    // Intermediate messages
    Intermediate {
        token: Token,
        top_tokens: Vec<Token>,
    },
    // Last message
    End {
        token: Token,
        top_tokens: Vec<Token>,
        generated_text: GeneratedText,
        start: Instant,
        queued: Instant,
    },
}

#[derive(Debug)]
pub(crate) struct InferResponse {
    /// input_length is the input as perceived by the rust tokenizer in the
    /// validation pathway. It is redundant with prefill.len() but prefill
    /// has data only if the user asked for it. This will always be filled.
    pub(crate) _input_length: u32,
    pub(crate) prefill: Vec<PrefillToken>,
    pub(crate) tokens: Vec<Token>,
    pub(crate) generated_text: GeneratedText,
    pub(crate) queued: Instant,
    pub(crate) start: Instant,
    pub(crate) top_tokens: Vec<Vec<Token>>,
}

#[derive(Debug, Error)]
pub enum InferError {
    #[error("Request failed during generation: {0}")]
    GenerationError(String),
    #[error("Model is overloaded")]
    Overloaded(#[from] TryAcquireError),
    #[error("Input validation error: {0}")]
    ValidationError(#[from] ValidationError),
    #[error("Incomplete generation")]
    IncompleteGeneration,
jixx's avatar
jixx committed
350
351
    #[error("Incomplete generation stream")]
    IncompleteGenerationStream,
jixx's avatar
init  
jixx committed
352
353
    #[error("Template error: {0}")]
    TemplateError(#[from] minijinja::Error),
jixx's avatar
jixx committed
354
355
    #[error("Missing template vatiable: {0}")]
    MissingTemplateVariable(String),
jixx's avatar
init  
jixx committed
356
357
    #[error("Tool error: {0}")]
    ToolError(String),
jixx's avatar
jixx committed
358
359
    #[error("Stream event serialization error")]
    StreamSerializationError(String),
jixx's avatar
init  
jixx committed
360
361
362
363
364
365
366
367
368
}

impl InferError {
    pub(crate) fn error_type(&self) -> &str {
        match self {
            InferError::GenerationError(_) => "generation",
            InferError::Overloaded(_) => "overloaded",
            InferError::ValidationError(_) => "validation",
            InferError::IncompleteGeneration => "incomplete_generation",
jixx's avatar
jixx committed
369
            InferError::IncompleteGenerationStream => "incomplete_generation_stream",
jixx's avatar
init  
jixx committed
370
            InferError::TemplateError(_) => "template_error",
jixx's avatar
jixx committed
371
            InferError::MissingTemplateVariable(_) => "missing_template_variable",
jixx's avatar
init  
jixx committed
372
            InferError::ToolError(_) => "tool_error",
jixx's avatar
jixx committed
373
            InferError::StreamSerializationError(_) => "stream_serialization_error",
jixx's avatar
init  
jixx committed
374
375
376
        }
    }
}