conftest.py 21.3 KB
Newer Older
jixx's avatar
init  
jixx committed
1
2
3
4
5
6
7
8
9
10
11
12
13
import asyncio
import contextlib
import json
import math
import os
import random
import shutil
import subprocess
import sys
import tempfile
import time
import docker
import pytest
jixx's avatar
jixx committed
14
15
16
17
import base64

from pathlib import Path
from typing import Dict, List, Optional
jixx's avatar
init  
jixx committed
18
19
20
from aiohttp import ClientConnectorError, ClientOSError, ServerDisconnectedError
from docker.errors import NotFound
from syrupy.extensions.json import JSONSnapshotExtension
jixx's avatar
jixx committed
21

jixx's avatar
init  
jixx committed
22
23
24
from text_generation import AsyncClient
from text_generation.types import (
    BestOfSequence,
jixx's avatar
jixx committed
25
    Message,
jixx's avatar
init  
jixx committed
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
    ChatComplete,
    ChatCompletionChunk,
    ChatCompletionComplete,
    Completion,
    Details,
    Grammar,
    InputToken,
    Response,
    Token,
)

DOCKER_IMAGE = os.getenv("DOCKER_IMAGE", None)
HF_TOKEN = os.getenv("HF_TOKEN", None)
DOCKER_VOLUME = os.getenv("DOCKER_VOLUME", "/data")
DOCKER_DEVICES = os.getenv("DOCKER_DEVICES")


def pytest_addoption(parser):
    parser.addoption(
        "--release", action="store_true", default=False, help="run release tests"
    )


def pytest_configure(config):
    config.addinivalue_line("markers", "release: mark test as a release-only test")


def pytest_collection_modifyitems(config, items):
    if config.getoption("--release"):
        # --release given in cli: do not skip release tests
        return
    skip_release = pytest.mark.skip(reason="need --release option to run")
    for item in items:
        if "release" in item.keywords:
            item.add_marker(skip_release)


class ResponseComparator(JSONSnapshotExtension):
    rtol = 0.2
    ignore_logprob = False

    def serialize(
        self,
        data,
        *,
jixx's avatar
jixx committed
71
        include=None,
jixx's avatar
init  
jixx committed
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
        exclude=None,
        matcher=None,
    ):
        if (
            isinstance(data, Response)
            or isinstance(data, ChatComplete)
            or isinstance(data, ChatCompletionChunk)
            or isinstance(data, ChatCompletionComplete)
        ):
            data = data.model_dump()

        if isinstance(data, List):
            data = [d.model_dump() for d in data]

        data = self._filter(
jixx's avatar
jixx committed
87
88
89
90
91
92
            data=data,
            depth=0,
            path=(),
            exclude=exclude,
            include=include,
            matcher=matcher,
jixx's avatar
init  
jixx committed
93
94
95
96
97
98
99
100
101
102
103
        )
        return json.dumps(data, indent=2, ensure_ascii=False, sort_keys=False) + "\n"

    def matches(
        self,
        *,
        serialized_data,
        snapshot_data,
    ) -> bool:
        def convert_data(data):
            data = json.loads(data)
jixx's avatar
jixx committed
104
            return _convert_data(data)
jixx's avatar
init  
jixx committed
105

jixx's avatar
jixx committed
106
        def _convert_data(data):
jixx's avatar
init  
jixx committed
107
            if isinstance(data, Dict):
jixx's avatar
jixx committed
108
109
110
111
112
113
114
115
116
117
118
119
120
                if "choices" in data:
                    data["choices"] = list(
                        sorted(data["choices"], key=lambda x: x["index"])
                    )
                    choices = data["choices"]
                    if isinstance(choices, List) and len(choices) >= 1:
                        if "delta" in choices[0]:
                            return ChatCompletionChunk(**data)
                        if "text" in choices[0]:
                            return Completion(**data)
                    return ChatComplete(**data)
                else:
                    return Response(**data)
jixx's avatar
init  
jixx committed
121
            if isinstance(data, List):
jixx's avatar
jixx committed
122
                return [_convert_data(d) for d in data]
jixx's avatar
init  
jixx committed
123
124
125
126
127
128
129
130
            raise NotImplementedError

        def eq_token(token: Token, other: Token) -> bool:
            return (
                token.id == other.id
                and token.text == other.text
                and (
                    self.ignore_logprob
jixx's avatar
jixx committed
131
                    or (token.logprob == other.logprob and token.logprob is None)
jixx's avatar
init  
jixx committed
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
                    or math.isclose(token.logprob, other.logprob, rel_tol=self.rtol)
                )
                and token.special == other.special
            )

        def eq_prefill_token(prefill_token: InputToken, other: InputToken) -> bool:
            try:
                return (
                    prefill_token.id == other.id
                    and prefill_token.text == other.text
                    and (
                        self.ignore_logprob
                        or math.isclose(
                            prefill_token.logprob,
                            other.logprob,
                            rel_tol=self.rtol,
                        )
                        if prefill_token.logprob is not None
                        else prefill_token.logprob == other.logprob
                    )
                )
            except TypeError:
                return False

        def eq_best_of(details: BestOfSequence, other: BestOfSequence) -> bool:
            return (
                details.finish_reason == other.finish_reason
                and details.generated_tokens == other.generated_tokens
                and details.seed == other.seed
                and len(details.prefill) == len(other.prefill)
                and all(
                    [
                        eq_prefill_token(d, o)
                        for d, o in zip(details.prefill, other.prefill)
                    ]
                )
                and len(details.tokens) == len(other.tokens)
                and all([eq_token(d, o) for d, o in zip(details.tokens, other.tokens)])
            )

        def eq_details(details: Details, other: Details) -> bool:
            return (
                details.finish_reason == other.finish_reason
                and details.generated_tokens == other.generated_tokens
                and details.seed == other.seed
                and len(details.prefill) == len(other.prefill)
                and all(
                    [
                        eq_prefill_token(d, o)
                        for d, o in zip(details.prefill, other.prefill)
                    ]
                )
                and len(details.tokens) == len(other.tokens)
                and all([eq_token(d, o) for d, o in zip(details.tokens, other.tokens)])
                and (
                    len(details.best_of_sequences)
                    if details.best_of_sequences is not None
                    else 0
                )
                == (
                    len(other.best_of_sequences)
                    if other.best_of_sequences is not None
                    else 0
                )
                and (
                    all(
                        [
                            eq_best_of(d, o)
                            for d, o in zip(
                                details.best_of_sequences, other.best_of_sequences
                            )
                        ]
                    )
                    if details.best_of_sequences is not None
                    else details.best_of_sequences == other.best_of_sequences
                )
            )

        def eq_completion(response: Completion, other: Completion) -> bool:
            return response.choices[0].text == other.choices[0].text

        def eq_chat_complete(response: ChatComplete, other: ChatComplete) -> bool:
            return (
                response.choices[0].message.content == other.choices[0].message.content
            )

        def eq_chat_complete_chunk(
            response: ChatCompletionChunk, other: ChatCompletionChunk
        ) -> bool:
            return response.choices[0].delta.content == other.choices[0].delta.content

        def eq_response(response: Response, other: Response) -> bool:
            return response.generated_text == other.generated_text and eq_details(
                response.details, other.details
            )

        serialized_data = convert_data(serialized_data)
        snapshot_data = convert_data(snapshot_data)

        if not isinstance(serialized_data, List):
            serialized_data = [serialized_data]
        if not isinstance(snapshot_data, List):
            snapshot_data = [snapshot_data]

        if isinstance(serialized_data[0], Completion):
            return len(snapshot_data) == len(serialized_data) and all(
                [eq_completion(r, o) for r, o in zip(serialized_data, snapshot_data)]
            )

        if isinstance(serialized_data[0], ChatComplete):
            return len(snapshot_data) == len(serialized_data) and all(
                [eq_chat_complete(r, o) for r, o in zip(serialized_data, snapshot_data)]
            )

        if isinstance(serialized_data[0], ChatCompletionChunk):
            return len(snapshot_data) == len(serialized_data) and all(
                [
                    eq_chat_complete_chunk(r, o)
                    for r, o in zip(serialized_data, snapshot_data)
                ]
            )

        return len(snapshot_data) == len(serialized_data) and all(
            [eq_response(r, o) for r, o in zip(serialized_data, snapshot_data)]
        )


class GenerousResponseComparator(ResponseComparator):
    # Needed for GPTQ with exllama which has serious numerical fluctuations.
    rtol = 0.75


class IgnoreLogProbResponseComparator(ResponseComparator):
    ignore_logprob = True


class LauncherHandle:
    def __init__(self, port: int):
jixx's avatar
jixx committed
270
        self.client = AsyncClient(f"http://localhost:{port}", timeout=30)
jixx's avatar
init  
jixx committed
271
272
273
274
275
276
277
278
279
280
281
282
283

    def _inner_health(self):
        raise NotImplementedError

    async def health(self, timeout: int = 60):
        assert timeout > 0
        for _ in range(timeout):
            if not self._inner_health():
                raise RuntimeError("Launcher crashed")

            try:
                await self.client.generate("test")
                return
jixx's avatar
jixx committed
284
            except (ClientConnectorError, ClientOSError, ServerDisconnectedError):
jixx's avatar
init  
jixx committed
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
                time.sleep(1)
        raise RuntimeError("Health check failed")


class ContainerLauncherHandle(LauncherHandle):
    def __init__(self, docker_client, container_name, port: int):
        super(ContainerLauncherHandle, self).__init__(port)
        self.docker_client = docker_client
        self.container_name = container_name

    def _inner_health(self) -> bool:
        container = self.docker_client.containers.get(self.container_name)
        return container.status in ["running", "created"]


class ProcessLauncherHandle(LauncherHandle):
    def __init__(self, process, port: int):
        super(ProcessLauncherHandle, self).__init__(port)
        self.process = process

    def _inner_health(self) -> bool:
        return self.process.poll() is None


@pytest.fixture
def response_snapshot(snapshot):
    return snapshot.use_extension(ResponseComparator)


@pytest.fixture
def generous_response_snapshot(snapshot):
    return snapshot.use_extension(GenerousResponseComparator)


@pytest.fixture
def ignore_logprob_response_snapshot(snapshot):
    return snapshot.use_extension(IgnoreLogProbResponseComparator)


@pytest.fixture(scope="module")
def event_loop():
    loop = asyncio.get_event_loop()
    yield loop
    loop.close()


@pytest.fixture(scope="module")
def launcher(event_loop):
    @contextlib.contextmanager
    def local_launcher(
        model_id: str,
        num_shard: Optional[int] = None,
        quantize: Optional[str] = None,
        trust_remote_code: bool = False,
        use_flash_attention: bool = True,
        disable_grammar_support: bool = False,
        dtype: Optional[str] = None,
jixx's avatar
jixx committed
342
        kv_cache_dtype: Optional[str] = None,
jixx's avatar
init  
jixx committed
343
344
345
346
        revision: Optional[str] = None,
        max_input_length: Optional[int] = None,
        max_batch_prefill_tokens: Optional[int] = None,
        max_total_tokens: Optional[int] = None,
jixx's avatar
jixx committed
347
348
349
        lora_adapters: Optional[List[str]] = None,
        cuda_graphs: Optional[List[int]] = None,
        attention: Optional[str] = None,
jixx's avatar
init  
jixx committed
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
    ):
        port = random.randint(8000, 10_000)
        master_port = random.randint(10_000, 20_000)

        shard_uds_path = (
            f"/tmp/tgi-tests-{model_id.split('/')[-1]}-{num_shard}-{quantize}-server"
        )

        args = [
            "text-generation-launcher",
            "--model-id",
            model_id,
            "--port",
            str(port),
            "--master-port",
            str(master_port),
            "--shard-uds-path",
            shard_uds_path,
        ]

        env = os.environ

        if disable_grammar_support:
            args.append("--disable-grammar-support")
        if num_shard is not None:
            args.extend(["--num-shard", str(num_shard)])
        if quantize is not None:
            args.append("--quantize")
            args.append(quantize)
        if dtype is not None:
            args.append("--dtype")
            args.append(dtype)
jixx's avatar
jixx committed
382
383
384
        if kv_cache_dtype is not None:
            args.append("--kv-cache-dtype")
            args.append(kv_cache_dtype)
jixx's avatar
init  
jixx committed
385
386
387
388
389
390
391
392
393
394
395
396
397
398
        if revision is not None:
            args.append("--revision")
            args.append(revision)
        if trust_remote_code:
            args.append("--trust-remote-code")
        if max_input_length:
            args.append("--max-input-length")
            args.append(str(max_input_length))
        if max_batch_prefill_tokens:
            args.append("--max-batch-prefill-tokens")
            args.append(str(max_batch_prefill_tokens))
        if max_total_tokens:
            args.append("--max-total-tokens")
            args.append(str(max_total_tokens))
jixx's avatar
jixx committed
399
400
401
402
403
404
405
406
        if lora_adapters:
            args.append("--lora-adapters")
            args.append(",".join(lora_adapters))
        if cuda_graphs:
            args.append("--cuda-graphs")
            args.append(",".join(map(str, cuda_graphs)))

        print(" ".join(args), file=sys.stderr)
jixx's avatar
init  
jixx committed
407
408

        env["LOG_LEVEL"] = "info,text_generation_router=debug"
jixx's avatar
jixx committed
409
        env["PREFILL_CHUNKING"] = "1"
jixx's avatar
init  
jixx committed
410
411
412

        if not use_flash_attention:
            env["USE_FLASH_ATTENTION"] = "false"
jixx's avatar
jixx committed
413
414
        if attention is not None:
            env["ATTENTION"] = attention
jixx's avatar
init  
jixx committed
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444

        with tempfile.TemporaryFile("w+") as tmp:
            # We'll output stdout/stderr to a temporary file. Using a pipe
            # cause the process to block until stdout is read.
            with subprocess.Popen(
                args,
                stdout=tmp,
                stderr=subprocess.STDOUT,
                env=env,
            ) as process:
                yield ProcessLauncherHandle(process, port)

                process.terminate()
                process.wait(60)

                tmp.seek(0)
                shutil.copyfileobj(tmp, sys.stderr)

        if not use_flash_attention:
            del env["USE_FLASH_ATTENTION"]

    @contextlib.contextmanager
    def docker_launcher(
        model_id: str,
        num_shard: Optional[int] = None,
        quantize: Optional[str] = None,
        trust_remote_code: bool = False,
        use_flash_attention: bool = True,
        disable_grammar_support: bool = False,
        dtype: Optional[str] = None,
jixx's avatar
jixx committed
445
        kv_cache_dtype: Optional[str] = None,
jixx's avatar
init  
jixx committed
446
447
448
449
        revision: Optional[str] = None,
        max_input_length: Optional[int] = None,
        max_batch_prefill_tokens: Optional[int] = None,
        max_total_tokens: Optional[int] = None,
jixx's avatar
jixx committed
450
451
452
        lora_adapters: Optional[List[str]] = None,
        cuda_graphs: Optional[List[int]] = None,
        attention: Optional[str] = None,
jixx's avatar
init  
jixx committed
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
    ):
        port = random.randint(8000, 10_000)

        args = ["--model-id", model_id, "--env"]

        if disable_grammar_support:
            args.append("--disable-grammar-support")
        if num_shard is not None:
            args.extend(["--num-shard", str(num_shard)])
        if quantize is not None:
            args.append("--quantize")
            args.append(quantize)
        if dtype is not None:
            args.append("--dtype")
            args.append(dtype)
jixx's avatar
jixx committed
468
469
470
        if kv_cache_dtype is not None:
            args.append("--kv-cache-dtype")
            args.append(kv_cache_dtype)
jixx's avatar
init  
jixx committed
471
472
473
474
475
476
477
478
479
480
481
482
483
484
        if revision is not None:
            args.append("--revision")
            args.append(revision)
        if trust_remote_code:
            args.append("--trust-remote-code")
        if max_input_length:
            args.append("--max-input-length")
            args.append(str(max_input_length))
        if max_batch_prefill_tokens:
            args.append("--max-batch-prefill-tokens")
            args.append(str(max_batch_prefill_tokens))
        if max_total_tokens:
            args.append("--max-total-tokens")
            args.append(str(max_total_tokens))
jixx's avatar
jixx committed
485
486
487
488
489
490
        if lora_adapters:
            args.append("--lora-adapters")
            args.append(",".join(lora_adapters))
        if cuda_graphs:
            args.append("--cuda-graphs")
            args.append(",".join(map(str, cuda_graphs)))
jixx's avatar
init  
jixx committed
491
492
493
494
495
496
497
498

        client = docker.from_env()

        container_name = f"tgi-tests-{model_id.split('/')[-1]}-{num_shard}-{quantize}"

        try:
            container = client.containers.get(container_name)
            container.stop()
jixx's avatar
jixx committed
499
            container.remove()
jixx's avatar
init  
jixx committed
500
501
502
503
504
505
506
507
            container.wait()
        except NotFound:
            pass

        gpu_count = num_shard if num_shard is not None else 1

        env = {
            "LOG_LEVEL": "info,text_generation_router=debug",
jixx's avatar
jixx committed
508
            "PREFILL_CHUNKING": "1",
jixx's avatar
init  
jixx committed
509
510
511
        }
        if not use_flash_attention:
            env["USE_FLASH_ATTENTION"] = "false"
jixx's avatar
jixx committed
512
513
        if attention is not None:
            env["ATTENTION"] = attention
jixx's avatar
init  
jixx committed
514
515
516
517
518
519
520
521
522

        if HF_TOKEN is not None:
            env["HF_TOKEN"] = HF_TOKEN

        volumes = []
        if DOCKER_VOLUME:
            volumes = [f"{DOCKER_VOLUME}:/data"]

        if DOCKER_DEVICES:
jixx's avatar
jixx committed
523
524
525
526
            if DOCKER_DEVICES.lower() == "none":
                devices = []
            else:
                devices = DOCKER_DEVICES.strip().split(",")
jixx's avatar
init  
jixx committed
527
528
529
530
            visible = os.getenv("ROCR_VISIBLE_DEVICES")
            if visible:
                env["ROCR_VISIBLE_DEVICES"] = visible
            device_requests = []
jixx's avatar
jixx committed
531
532
533
534
535
536
537
538
539
540
541
542
            if not devices:
                devices = None
            elif devices == ["nvidia.com/gpu=all"]:
                devices = None
                device_requests = [
                    docker.types.DeviceRequest(
                        driver="cdi",
                        # count=gpu_count,
                        device_ids=[f"nvidia.com/gpu={i}"],
                    )
                    for i in range(gpu_count)
                ]
jixx's avatar
init  
jixx committed
543
        else:
jixx's avatar
jixx committed
544
            devices = None
jixx's avatar
init  
jixx committed
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
            device_requests = [
                docker.types.DeviceRequest(count=gpu_count, capabilities=[["gpu"]])
            ]

        container = client.containers.run(
            DOCKER_IMAGE,
            command=args,
            name=container_name,
            environment=env,
            auto_remove=False,
            detach=True,
            device_requests=device_requests,
            devices=devices,
            volumes=volumes,
            ports={"80/tcp": port},
jixx's avatar
jixx committed
560
            healthcheck={"timeout": int(10 * 1e9)},
jixx's avatar
init  
jixx committed
561
562
563
            shm_size="1G",
        )

jixx's avatar
jixx committed
564
565
        try:
            yield ContainerLauncherHandle(client, container.name, port)
jixx's avatar
init  
jixx committed
566

jixx's avatar
jixx committed
567
568
            if not use_flash_attention:
                del env["USE_FLASH_ATTENTION"]
jixx's avatar
init  
jixx committed
569

jixx's avatar
jixx committed
570
571
572
573
574
            try:
                container.stop()
                container.wait()
            except NotFound:
                pass
jixx's avatar
init  
jixx committed
575

jixx's avatar
jixx committed
576
577
            container_output = container.logs().decode("utf-8")
            print(container_output, file=sys.stderr)
jixx's avatar
init  
jixx committed
578

jixx's avatar
jixx committed
579
580
581
582
583
        finally:
            try:
                container.remove()
            except Exception:
                pass
jixx's avatar
init  
jixx committed
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615

    if DOCKER_IMAGE is not None:
        return docker_launcher
    return local_launcher


@pytest.fixture(scope="module")
def generate_load():
    async def generate_load_inner(
        client: AsyncClient,
        prompt: str,
        max_new_tokens: int,
        n: int,
        seed: Optional[int] = None,
        grammar: Optional[Grammar] = None,
        stop_sequences: Optional[List[str]] = None,
    ) -> List[Response]:
        futures = [
            client.generate(
                prompt,
                max_new_tokens=max_new_tokens,
                decoder_input_details=True,
                seed=seed,
                grammar=grammar,
                stop_sequences=stop_sequences,
            )
            for _ in range(n)
        ]

        return await asyncio.gather(*futures)

    return generate_load_inner
jixx's avatar
jixx committed
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668


@pytest.fixture(scope="module")
def generate_multi():
    async def generate_load_inner(
        client: AsyncClient,
        prompts: List[str],
        max_new_tokens: int,
        seed: Optional[int] = None,
    ) -> List[Response]:
        import numpy as np

        arange = np.arange(len(prompts))
        perm = np.random.permutation(arange)
        rperm = [-1] * len(perm)
        for i, p in enumerate(perm):
            rperm[p] = i

        shuffled_prompts = [prompts[p] for p in perm]
        futures = [
            client.chat(
                messages=[Message(role="user", content=prompt)],
                max_tokens=max_new_tokens,
                temperature=0,
                seed=seed,
            )
            for prompt in shuffled_prompts
        ]

        shuffled_responses = await asyncio.gather(*futures)
        responses = [shuffled_responses[p] for p in rperm]
        return responses

    return generate_load_inner


# TODO fix the server parsser to count inline image tokens correctly
@pytest.fixture
def chicken():
    path = Path(__file__).parent / "images" / "chicken_on_money.png"

    with open(path, "rb") as image_file:
        encoded_string = base64.b64encode(image_file.read())
    return f"data:image/png;base64,{encoded_string.decode('utf-8')}"


@pytest.fixture
def cow_beach():
    path = Path(__file__).parent / "images" / "cow_beach.png"

    with open(path, "rb") as image_file:
        encoded_string = base64.b64encode(image_file.read())
    return f"data:image/png;base64,{encoded_string.decode('utf-8')}"