inference_api.py 5.45 KB
Newer Older
jixx's avatar
init  
jixx committed
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
import os
import requests

from typing import Dict, Optional, List
from huggingface_hub.utils import build_hf_headers

from text_generation import Client, AsyncClient, __version__
from text_generation.types import DeployedModel
from text_generation.errors import NotSupportedError, parse_error

INFERENCE_ENDPOINT = os.environ.get(
    "HF_INFERENCE_ENDPOINT", "https://api-inference.huggingface.co"
)


def deployed_models(headers: Optional[Dict] = None) -> List[DeployedModel]:
    """
    Get all currently deployed models with text-generation-inference-support

    Returns:
        List[DeployedModel]: list of all currently deployed models
    """
    resp = requests.get(
jixx's avatar
jixx committed
24
        "https://api-inference.huggingface.co/framework/text-generation-inference",
jixx's avatar
init  
jixx committed
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
        headers=headers,
        timeout=5,
    )

    payload = resp.json()
    if resp.status_code != 200:
        raise parse_error(resp.status_code, payload)

    models = [DeployedModel(**raw_deployed_model) for raw_deployed_model in payload]
    return models


def check_model_support(repo_id: str, headers: Optional[Dict] = None) -> bool:
    """
    Check if a given model is supported by text-generation-inference

    Returns:
        bool: whether the model is supported by this client
    """
    resp = requests.get(
        f"https://api-inference.huggingface.co/status/{repo_id}",
        headers=headers,
        timeout=5,
    )

    payload = resp.json()
    if resp.status_code != 200:
        raise parse_error(resp.status_code, payload)

    framework = payload["framework"]
    supported = framework == "text-generation-inference"
    return supported


class InferenceAPIClient(Client):
    """Client to make calls to the HuggingFace Inference API.

     Only supports a subset of the available text-generation or text2text-generation models that are served using
     text-generation-inference

     Example:

     ```python
     >>> from text_generation import InferenceAPIClient

     >>> client = InferenceAPIClient("bigscience/bloomz")
     >>> client.generate("Why is the sky blue?").generated_text
     ' Rayleigh scattering'

     >>> result = ""
     >>> for response in client.generate_stream("Why is the sky blue?"):
     >>>     if not response.token.special:
     >>>         result += response.token.text
     >>> result
    ' Rayleigh scattering'
     ```
    """

    def __init__(self, repo_id: str, token: Optional[str] = None, timeout: int = 10):
        """
        Init headers and API information

        Args:
            repo_id (`str`):
                Id of repository (e.g. `bigscience/bloom`).
            token (`str`, `optional`):
                The API token to use as HTTP bearer authorization. This is not
                the authentication token. You can find the token in
                https://huggingface.co/settings/token. Alternatively, you can
                find both your organizations and personal API tokens using
                `HfApi().whoami(token)`.
            timeout (`int`):
                Timeout in seconds
        """

        headers = build_hf_headers(
            token=token, library_name="text-generation", library_version=__version__
        )

        # Text Generation Inference client only supports a subset of the available hub models
        if not check_model_support(repo_id, headers):
            raise NotSupportedError(repo_id)

        base_url = f"{INFERENCE_ENDPOINT}/models/{repo_id}"

        super(InferenceAPIClient, self).__init__(
            base_url, headers=headers, timeout=timeout
        )


class InferenceAPIAsyncClient(AsyncClient):
    """Aynschronous Client to make calls to the HuggingFace Inference API.

     Only supports a subset of the available text-generation or text2text-generation models that are served using
     text-generation-inference

     Example:

     ```python
     >>> from text_generation import InferenceAPIAsyncClient

     >>> client = InferenceAPIAsyncClient("bigscience/bloomz")
     >>> response = await client.generate("Why is the sky blue?")
     >>> response.generated_text
     ' Rayleigh scattering'

     >>> result = ""
     >>> async for response in client.generate_stream("Why is the sky blue?"):
     >>>     if not response.token.special:
     >>>         result += response.token.text
     >>> result
    ' Rayleigh scattering'
     ```
    """

    def __init__(self, repo_id: str, token: Optional[str] = None, timeout: int = 10):
        """
        Init headers and API information

        Args:
            repo_id (`str`):
                Id of repository (e.g. `bigscience/bloom`).
            token (`str`, `optional`):
                The API token to use as HTTP bearer authorization. This is not
                the authentication token. You can find the token in
                https://huggingface.co/settings/token. Alternatively, you can
                find both your organizations and personal API tokens using
                `HfApi().whoami(token)`.
            timeout (`int`):
                Timeout in seconds
        """
        headers = build_hf_headers(
            token=token, library_name="text-generation", library_version=__version__
        )

        # Text Generation Inference client only supports a subset of the available hub models
        if not check_model_support(repo_id, headers):
            raise NotSupportedError(repo_id)

        base_url = f"{INFERENCE_ENDPOINT}/models/{repo_id}"

        super(InferenceAPIAsyncClient, self).__init__(
            base_url, headers=headers, timeout=timeout
        )