block_allocator.rs 5.83 KB
Newer Older
jixx's avatar
jixx committed
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
use std::sync::Arc;
use tokio::sync::{mpsc, oneshot};

use crate::radix::RadixAllocator;

#[derive(Debug, Clone)]
pub struct BlockAllocation {
    pub allocation_id: u64,
    pub blocks: Vec<u32>,
    pub slots: Vec<u32>,

    /// Prefix that was cached and for which the KV does not have to
    /// be recomputed.
    pub prefix_len: u32,

    pub(crate) block_allocator: Option<BlockAllocator>,
}

impl Drop for BlockAllocation {
    fn drop(&mut self) {
        if let Some(block_allocator) = self.block_allocator.as_mut() {
            block_allocator.free(self.blocks.clone(), self.allocation_id)
        }
    }
}

#[derive(Debug, Clone)]
pub struct BlockAllocator {
    /// Channel to communicate with the background task
    block_allocator: mpsc::UnboundedSender<BlockAllocatorCommand>,
}

impl BlockAllocator {
    pub(crate) fn new(
        max_batch_total_tokens: u32,
        block_size: u32,
        prefix_caching: bool,
        window_size: Option<u32>,
    ) -> Self {
        // Create channel
        let (sender, receiver) = mpsc::unbounded_channel();

        // Launch background queue task
        tokio::spawn(block_allocator_task(
            max_batch_total_tokens / block_size,
            block_size,
            prefix_caching,
            window_size,
            receiver,
        ));

        Self {
            block_allocator: sender,
        }
    }

    pub(crate) async fn allocate(
        &self,
        tokens: u32,
        prefill_tokens: Option<Arc<Vec<u32>>>,
    ) -> Option<BlockAllocation> {
        let (response_sender, response_receiver) = oneshot::channel();
        self.block_allocator
            .send(BlockAllocatorCommand::Allocate {
                tokens,
                prefill_tokens,
                response_sender,
            })
            .unwrap();

        response_receiver.await.unwrap().map(|mut allocation| {
            allocation.block_allocator = Some(self.clone());
            allocation
        })
    }

    pub(crate) fn free(&self, blocks: Vec<u32>, allocation_id: u64) {
        self.block_allocator
            .send(BlockAllocatorCommand::Free {
                allocation_id,
                blocks,
            })
            .unwrap();
    }
}

async fn block_allocator_task(
    blocks: u32,
    block_size: u32,
    prefix_caching: bool,
    window_size: Option<u32>,
    mut receiver: mpsc::UnboundedReceiver<BlockAllocatorCommand>,
) {
    let mut allocator: Box<dyn Allocator + Send> = if prefix_caching {
        Box::new(RadixAllocator::new(block_size, blocks, window_size))
    } else {
        Box::new(SimpleAllocator::new(blocks, block_size, window_size))
    };
    while let Some(cmd) = receiver.recv().await {
        match cmd {
            BlockAllocatorCommand::Free {
                blocks,
                allocation_id,
            } => allocator.free(blocks, allocation_id),
            BlockAllocatorCommand::Allocate {
                tokens,
                prefill_tokens,
                response_sender,
            } => {
                response_sender
                    .send(allocator.allocate(tokens, prefill_tokens))
                    .unwrap();
            }
        }
    }
}

#[derive(Debug)]
enum BlockAllocatorCommand {
    Free {
        blocks: Vec<u32>,
        allocation_id: u64,
    },
    Allocate {
        tokens: u32,
        prefill_tokens: Option<Arc<Vec<u32>>>,
        response_sender: oneshot::Sender<Option<BlockAllocation>>,
    },
}

pub trait Allocator {
    fn allocate(
        &mut self,
        tokens: u32,
        prefill_tokens: Option<Arc<Vec<u32>>>,
    ) -> Option<BlockAllocation>;

    fn free(&mut self, blocks: Vec<u32>, allocation_id: u64);
}
pub struct SimpleAllocator {
    free_blocks: Vec<u32>,
    block_size: u32,
    window_size: Option<u32>,
}

impl SimpleAllocator {
    fn new(blocks: u32, block_size: u32, window_size: Option<u32>) -> Self {
        SimpleAllocator {
            block_size,
            // Block 0 is reserved for health checks
            free_blocks: (1..blocks).collect(),
            window_size,
        }
    }
}

impl Allocator for SimpleAllocator {
    fn allocate(
        &mut self,
        tokens: u32,
        _prefill_tokens: Option<Arc<Vec<u32>>>,
    ) -> Option<BlockAllocation> {
        // Apply window size
        let (required_blocks, repeats) = {
            let (tokens, repeats) = match self.window_size {
                None => (tokens, 1),
                Some(window_size) => {
                    let repeats = (tokens + window_size - 1) / window_size;
                    let tokens = core::cmp::min(tokens, window_size);
                    (tokens, repeats as usize)
                }
            };
            // Pad to a multiple of block size
            let required_blocks = (tokens + self.block_size - 1) / self.block_size;
            (required_blocks, repeats)
        };

        let tokens = tokens as usize;
        if required_blocks > self.free_blocks.len() as u32 {
            None
        } else {
            let blocks = self
                .free_blocks
                .split_off(self.free_blocks.len() - required_blocks as usize);
            let mut slots =
                Vec::with_capacity((required_blocks * self.block_size * repeats as u32) as usize);

            'slots: for block_id in blocks.repeat(repeats).iter() {
                for s in (block_id * self.block_size)..((block_id + 1) * self.block_size) {
                    slots.push(s);
                    if slots.len() == tokens {
                        break 'slots;
                    }
                }
            }
            Some(BlockAllocation {
                allocation_id: 0,
                blocks,
                slots,
                prefix_len: 0,
                block_allocator: None,
            })
        }
    }

    fn free(&mut self, blocks: Vec<u32>, _allocation_id: u64) {
        self.free_blocks.extend(blocks)
    }
}