main.rs 9.85 KB
Newer Older
jixx's avatar
jixx committed
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
use std::path::{Path, PathBuf};

use clap::Parser;
use hf_hub::api::tokio::{Api, ApiBuilder};
use hf_hub::{Cache, Repo, RepoType};
use tokenizers::Tokenizer;
use tracing::info;

use text_generation_backends_trtllm::errors::TensorRtLlmBackendError;
use text_generation_backends_trtllm::TensorRtLlmBackendV2;
use text_generation_router::server::get_base_tokenizer;
use text_generation_router::usage_stats::UsageStatsLevel;
use text_generation_router::{server, HubTokenizerConfig};

/// App Configuration
#[derive(Parser, Debug)]
#[clap(author, version, about, long_about = None)]
struct Args {
    #[clap(default_value = "128", long, env)]
    max_concurrent_requests: usize,
    #[clap(default_value = "2", long, env)]
    max_best_of: usize,
    #[clap(default_value = "4", long, env)]
    max_stop_sequences: usize,
    #[clap(default_value = "5", long, env)]
    max_top_n_tokens: u32,
    #[clap(default_value = "1024", long, env)]
    max_input_tokens: usize,
    #[clap(default_value = "2048", long, env)]
    max_total_tokens: usize,
    #[clap(default_value = "4096", long, env)]
    max_batch_prefill_tokens: u32,
    #[clap(long, env)]
    max_batch_total_tokens: Option<u32>,
    #[clap(default_value = "0.0.0.0", long, env)]
    hostname: String,
    #[clap(default_value = "3000", long, short, env)]
    port: u16,
    #[clap(long, env, required = true)]
    tokenizer_name: String,
    #[clap(long, env)]
    tokenizer_config_path: Option<String>,
    #[clap(long, env)]
    revision: Option<String>,
    #[clap(long, env)]
    model_id: String,
    #[clap(default_value = "2", long, env)]
    validation_workers: usize,
    #[clap(long, env)]
    json_output: bool,
    #[clap(long, env)]
    otlp_endpoint: Option<String>,
    #[clap(default_value = "text-generation-inference.router", long, env)]
    otlp_service_name: String,
    #[clap(long, env)]
    cors_allow_origin: Option<Vec<String>>,
    #[clap(default_value = "4", long, env)]
    max_client_batch_size: usize,
    #[clap(long, env)]
    auth_token: Option<String>,
    #[clap(long, env, help = "Path to the TensorRT-LLM Orchestrator worker")]
    executor_worker: PathBuf,
    #[clap(default_value = "on", long, env)]
    usage_stats: usage_stats::UsageStatsLevel,
}

async fn get_tokenizer(
    tokenizer_name: &str,
    tokenizer_config_path: Option<&str>,
    revision: Option<&str>,
) -> Option<Tokenizer> {
    // Parse Huggingface hub token
    let authorization_token = std::env::var("HF_TOKEN")
        .or_else(|_| std::env::var("HUGGING_FACE_HUB_TOKEN"))
        .ok();

    // Tokenizer instance
    let local_path = Path::new(tokenizer_name);

    // Shared API builder initialization
    let api_builder = || {
        let mut builder = ApiBuilder::new()
            .with_progress(false)
            .with_token(authorization_token);

        if let Ok(cache_dir) = std::env::var("HUGGINGFACE_HUB_CACHE") {
            builder = builder.with_cache_dir(cache_dir.into());
        }

        builder
    };

    // Decide if we need to use the API based on the revision and local path
    let use_api = revision.is_some() || !local_path.exists() || !local_path.is_dir();

    // Initialize API if needed
    #[derive(Clone)]
    enum Type {
        Api(Api),
        Cache(Cache),
        None,
    }
    let api = if use_api {
        if std::env::var("HF_HUB_OFFLINE") == Ok("1".to_string()) {
            let cache = std::env::var("HUGGINGFACE_HUB_CACHE")
                .map_err(|_| ())
                .map(|cache_dir| Cache::new(cache_dir.into()))
                .unwrap_or_else(|_| Cache::default());
            tracing::warn!("Offline mode active using cache defaults");
            Type::Cache(cache)
        } else {
            tracing::info!("Using the Hugging Face API");
            match api_builder().build() {
                Ok(api) => Type::Api(api),
                Err(_) => {
                    tracing::warn!("Unable to build the Hugging Face API");
                    Type::None
                }
            }
        }
    } else {
        Type::None
    };

    // Load tokenizer and model info
    let (
        tokenizer_filename,
        _config_filename,
        tokenizer_config_filename,
        _preprocessor_config_filename,
        _processor_config_filename,
    ) = match api {
        Type::None => (
            Some(local_path.join("tokenizer.json")),
            Some(local_path.join("config.json")),
            Some(local_path.join("tokenizer_config.json")),
            Some(local_path.join("preprocessor_config.json")),
            Some(local_path.join("processor_config.json")),
        ),
        Type::Api(api) => {
            let api_repo = api.repo(Repo::with_revision(
                tokenizer_name.to_string(),
                RepoType::Model,
                revision.unwrap_or_else(|| "main").to_string(),
            ));

            let tokenizer_filename = match api_repo.get("tokenizer.json").await {
                Ok(tokenizer_filename) => Some(tokenizer_filename),
                Err(_) => get_base_tokenizer(&api, &api_repo).await,
            };
            let config_filename = api_repo.get("config.json").await.ok();
            let tokenizer_config_filename = api_repo.get("tokenizer_config.json").await.ok();
            let preprocessor_config_filename = api_repo.get("preprocessor_config.json").await.ok();
            let processor_config_filename = api_repo.get("processor_config.json").await.ok();

            (
                tokenizer_filename,
                config_filename,
                tokenizer_config_filename,
                preprocessor_config_filename,
                processor_config_filename,
            )
        }
        Type::Cache(cache) => {
            let repo = cache.repo(Repo::with_revision(
                tokenizer_name.to_string(),
                RepoType::Model,
                revision.clone().unwrap_or_else(|| "main").to_string(),
            ));
            (
                repo.get("tokenizer.json"),
                repo.get("config.json"),
                repo.get("tokenizer_config.json"),
                repo.get("preprocessor_config.json"),
                repo.get("processor_config.json"),
            )
        }
    };

    // Read the JSON contents of the file as an instance of 'HubTokenizerConfig'.
    let tokenizer_config: Option<HubTokenizerConfig> = if let Some(filename) = tokenizer_config_path
    {
        HubTokenizerConfig::from_file(filename)
    } else {
        tokenizer_config_filename.and_then(HubTokenizerConfig::from_file)
    };

    tokenizer_filename.and_then(|filename| Tokenizer::from_file(filename).ok())
}

#[tokio::main]
async fn main() -> Result<(), TensorRtLlmBackendError> {
    // Get args
    let args = Args::parse();
    // Pattern match configuration
    let Args {
        max_concurrent_requests,
        max_best_of,
        max_stop_sequences,
        max_top_n_tokens,
        max_input_tokens,
        max_total_tokens,
        max_batch_prefill_tokens,
        max_batch_total_tokens,
        hostname,
        port,
        tokenizer_name,
        tokenizer_config_path,
        revision,
        model_id,
        validation_workers,
        json_output,
        otlp_endpoint,
        otlp_service_name,
        cors_allow_origin,
        max_client_batch_size,
        auth_token,
        executor_worker,
        usage_stats,
    } = args;

    // Launch Tokio runtime
    text_generation_router::logging::init_logging(otlp_endpoint, otlp_service_name, json_output);

    // Validate args
    if max_input_tokens >= max_total_tokens {
        return Err(TensorRtLlmBackendError::ArgumentValidation(
            "`max_input_tokens` must be < `max_total_tokens`".to_string(),
        ));
    }
    if max_input_tokens as u32 > max_batch_prefill_tokens {
        return Err(TensorRtLlmBackendError::ArgumentValidation(format!("`max_batch_prefill_tokens` must be >= `max_input_tokens`. Given: {max_batch_prefill_tokens} and {max_input_tokens}")));
    }

    if validation_workers == 0 {
        return Err(TensorRtLlmBackendError::ArgumentValidation(
            "`validation_workers` must be > 0".to_string(),
        ));
    }

    if let Some(ref max_batch_total_tokens) = max_batch_total_tokens {
        if max_batch_prefill_tokens > *max_batch_total_tokens {
            return Err(TensorRtLlmBackendError::ArgumentValidation(format!("`max_batch_prefill_tokens` must be <= `max_batch_total_tokens`. Given: {max_batch_prefill_tokens} and {max_batch_total_tokens}")));
        }
        if max_total_tokens as u32 > *max_batch_total_tokens {
            return Err(TensorRtLlmBackendError::ArgumentValidation(format!("`max_total_tokens` must be <= `max_batch_total_tokens`. Given: {max_total_tokens} and {max_batch_total_tokens}")));
        }
    }

    if !executor_worker.exists() {
        return Err(TensorRtLlmBackendError::ArgumentValidation(format!(
            "`executor_work` specified path doesn't exists: {}",
            executor_worker.display()
        )));
    }

    // Create the backend
    let tokenizer = get_tokenizer(
        &tokenizer_name,
        tokenizer_config_path.as_deref(),
        revision.as_deref(),
    )
    .await
    .expect("Failed to retrieve tokenizer implementation");

    info!("Successfully retrieved tokenizer {}", &tokenizer_name);
    let backend = TensorRtLlmBackendV2::new(
        tokenizer,
        model_id,
        executor_worker,
        max_concurrent_requests,
    )?;

    info!("Successfully created backend");

    // Run server
    server::run(
        backend,
        max_concurrent_requests,
        max_best_of,
        max_stop_sequences,
        max_top_n_tokens,
        max_input_tokens,
        max_total_tokens,
        validation_workers,
        auth_token,
        tokenizer_name,
        tokenizer_config_path,
        revision,
        hostname,
        port,
        cors_allow_origin,
        false,
        None,
        None,
        true,
        max_client_batch_size,
        usage_stats,
    )
    .await?;
    Ok(())
}