backend.cpp 7.79 KB
Newer Older
jixx's avatar
jixx committed
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
#include <cstdlib>
#include <fstream>

#include <fmt/ranges.h>
#include <spdlog/spdlog.h>
#include <nvml.h>

#include "backend.h"
#include "hardware.h"


void huggingface::tgi::backends::InitializeLogging() {
#ifdef NDEBUG
    if (const auto TRTLLM_LOG_LEVEL_CSTR = std::getenv("TRTLLM_LOG_LEVEL")) {
        std::string log_level(TRTLLM_LOG_LEVEL_CSTR);
        std::transform(log_level.begin(), log_level.end(), log_level.begin(), [](unsigned char c) {
            return std::tolower(c);
        });

        if (log_level == "debug")
            spdlog::set_level(spdlog::level::debug);
        else
            spdlog::set_level(spdlog::level::info);
    }
#else
    spdlog::set_level(spdlog::level::debug);
#endif
}

void huggingface::tgi::backends::InitializeBackend() {
    SPDLOG_INFO("Initializing Backend...");
    nvmlInit_v2();
    initTrtLlmPlugins();

    InitializeLogging();

    SPDLOG_INFO("Backend Executor Version: {}", tle::version());
    const auto numGpus = huggingface::hardware::cuda::GetNumDevices();
    if (numGpus.has_value()) {
        SPDLOG_INFO("Detected {:d} Nvidia GPU(s)", numGpus.value());
    } else {
        SPDLOG_WARN("Failed to detected Nvidia GPU(s) on the system");
    }
}

[[nodiscard]]
tle::ParallelConfig
huggingface::tgi::backends::GetParallelConfig(const size_t worldSize, const std::string workerPath) noexcept {
    auto mode = tle::CommunicationMode::kLEADER;
    std::optional<tle::OrchestratorConfig> orchestratorConfig = std::nullopt;

    if (worldSize > 1) {
        SPDLOG_INFO("Detected sharded engine deployment, using orchestrator mode");
        mode = tle::CommunicationMode::kORCHESTRATOR;
        orchestratorConfig = std::make_optional<tle::OrchestratorConfig>(true, workerPath, nullptr, true);
    } else {
        SPDLOG_INFO("Detected single engine deployment, using leader mode");
    }

    return tle::ParallelConfig(tle::CommunicationType::kMPI, mode, std::nullopt, std::nullopt, orchestratorConfig);
}

[[nodiscard]]
tle::ExecutorConfig huggingface::tgi::backends::GetExecutorConfig(const json &config, const std::string &workerPath) {
    tle::ExecutorConfig execConfig(/* maxBeamWidth = */ 1);

    // Retrieve the compute capabilities to enable some options at runtime
    const auto computeCapabilities = huggingface::hardware::cuda::GetCudaComputeCapabilities();

    // Single engine (TP = PP = 1) -> using leader mode (no MPI involved)
    const auto worldSize = config["/pretrained_config/mapping/world_size"_json_pointer].get<size_t>();
    execConfig.setParallelConfig(GetParallelConfig(worldSize, workerPath));

    // Define some configuration variables
    execConfig.setKvCacheConfig(tle::KvCacheConfig(true));
    execConfig.setEnableChunkedContext(computeCapabilities.IsPostAmpere());
    execConfig.setSchedulerConfig(tle::SchedulerConfig(tle::CapacitySchedulerPolicy::kMAX_UTILIZATION));
    return execConfig;
}

tle::SamplingConfig huggingface::tgi::backends::GetSamplingConfig(
        const uint32_t topK,
        const float_t topP,
        const float_t temperature,
        const float_t repetition_penalty,
        const float_t frequency_penalty,
        const uint64_t seed) noexcept {

    return tle::SamplingConfig(
            1,  // TGI only use a single beam
            topK,
            topP,
            std::nullopt,
            std::nullopt,
            std::nullopt,
            seed,
            temperature,
            temperature,
            std::nullopt,
            repetition_penalty,
            std::nullopt,
            frequency_penalty
    );
}

std::optional<std::list<std::vector<huggingface::tgi::backends::TokenId>>>
huggingface::tgi::backends::GetStopWordsFromConfig(
        const std::filesystem::path &generationConfigPath) noexcept {
    if (exists(generationConfigPath)) {
        const auto generationConfig = json::parse(std::ifstream(generationConfigPath));
        if (const auto eosTokenIds = generationConfig["/eos_token_id"_json_pointer]; eosTokenIds.is_array()) {
            SPDLOG_INFO(FMT_STRING("Found {:d} EOS tokens"), eosTokenIds.size());
            std::list<std::vector<huggingface::tgi::backends::TokenId>> stopWords(eosTokenIds.size());

            const auto to_single_token = [](const auto tokenIdObj) -> decltype(stopWords)::value_type {
                return {tokenIdObj.template get<tle::TokenIdType>()};
            };

            std::transform(eosTokenIds.cbegin(), eosTokenIds.cend(), stopWords.begin(), to_single_token);
            return stopWords;
        } else {
            SPDLOG_INFO("Invalid EOS tokens entry found (not an array)");
        }
    } else {
        SPDLOG_INFO("No EOS tokens found, generation_config.json doesn't exist");
    }

    return std::nullopt;
}

huggingface::tgi::backends::TensorRtLlmBackend::TensorRtLlmBackend(
        const std::filesystem::path &enginesFolder,
        const std::filesystem::path &executorWorker
) :
        config(json::parse(std::ifstream(enginesFolder / "config.json"))),
        executor(enginesFolder, tensorrt_llm::executor::ModelType::kDECODER_ONLY,
                 GetExecutorConfig(config, executorWorker.string())) {

    SPDLOG_INFO(FMT_STRING("Engine (version={})"), config["/version"_json_pointer].get<std::string_view>());

    // Ensure we have enough GPUs on the system
    const auto worldSize = config["/pretrained_config/mapping/world_size"_json_pointer].get<size_t>();
    const auto numGpus = huggingface::hardware::cuda::GetNumDevices().value_or(0);
    if (numGpus < worldSize) {
        SPDLOG_CRITICAL(FMT_NOT_ENOUGH_GPUS, numGpus, worldSize);
        // todo : raise exception to catch on rust side
    }

    // Cache variables
    maxNumTokens = config["/build_config/max_num_tokens"_json_pointer].get<uint32_t>();

    // Attempt to discover stopWords from the generation_config.json
    const auto generationConfigPath = enginesFolder / "generation_config.json";
    stopWords = GetStopWordsFromConfig(generationConfigPath).value_or(std::list<std::vector<TokenId>>());
}

[[nodiscard("Returned number of requests needs to be consumed")]]
size_t huggingface::tgi::backends::TensorRtLlmBackend::NumResponsesReady() const {
#ifdef NDEBUG
    return executor.getNumResponsesReady();
#else
    const auto numResponses = executor.getNumResponsesReady();
    if (numResponses > 0) SPDLOG_INFO(FMT_STRING("Num responses ready: {:d}"), numResponses);
    return numResponses;
#endif
}

[[nodiscard("Returned request id needs to be provided back to gather generated tokens")]]
tle::IdType huggingface::tgi::backends::TensorRtLlmBackend::Submit(
        const std::vector<tle::TokenIdType> &tokens,
        const uint32_t maxNewTokens,
        const int32_t topK,
        const float_t topP,
        const float_t temperature,
        const float_t repetitionPenalty,
        const float_t frequencyPenalty,
        const uint64_t seed
) {
    const auto maxNewTokensChecked = std::min(maxNewTokens, static_cast<uint32_t>(maxNumTokens - tokens.size()));
#ifndef NDEBUG
    {
        const auto &iterations = executor.getLatestIterationStats();
        const auto &lastIteration = iterations.front();

        SPDLOG_DEBUG(FMT_EXECUTOR_STATS, fmt::join(tokens, ", "), lastIteration.numActiveRequests);
        SPDLOG_DEBUG(FMT_SAMPLING_CONFIG, topK, topP, temperature, repetitionPenalty, frequencyPenalty, seed);
        SPDLOG_DEBUG(FMT_STRING("Asking for max_new_tokens={:d}"), maxNewTokensChecked);
    }
#endif

    const auto sampling = GetSamplingConfig(topK, topP, temperature, repetitionPenalty, frequencyPenalty, seed);

    // Build the request
    auto request = tle::Request{tokens, CAST_SIZETYPE(maxNewTokensChecked), true, sampling, OUTPUT_CONFIG};
    request.setStopWords(stopWords);

    // Submit to the executor for batching
    return executor.enqueueRequest(request);
}

std::vector<tle::Response> huggingface::tgi::backends::TensorRtLlmBackend::PullNewTokens() {
    return executor.awaitResponses();
}