weights.py 32 KB
Newer Older
jixx's avatar
init  
jixx committed
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
import os
from pathlib import Path
from typing import Dict, List, Optional, Union
from safetensors import safe_open, SafetensorError
import torch
from loguru import logger
from huggingface_hub import hf_hub_download
import json
from text_generation_server.layers.gptq import GPTQParams
from text_generation_server.utils.log import log_once


class Weights:
    def __init__(
        self,
        filenames: List[Path],
        device,
        dtype,
        process_group,
        aliases: Optional[Dict[str, List[str]]] = None,
        prefix: Optional[str] = None,
    ):
        routing = {}
        for filename in filenames:
            with safe_open(filename, framework="pytorch") as f:
                for k in f.keys():
                    if k in routing:
                        raise RuntimeError(
                            f"Key {k} was found in multiple files: {filename} and {routing[k]}"
                        )
                    routing[k] = filename
        if aliases is None:
            aliases = {}
        self.aliases = aliases
        self.routing = routing
        self.device = device
        self.dtype = dtype
        self.process_group = process_group
        self.prefix = prefix
        self._handles = {}

    def _get_handle(self, filename):
        if filename not in self._handles:
            f = safe_open(filename, framework="pytorch")
            self._handles[filename] = f

        return self._handles[filename]

    def get_filename(self, tensor_name: str) -> (str, str):
        names = [tensor_name]
        if self.prefix is not None:
            prefixed = f"{self.prefix}.{tensor_name}"
            names.append(prefixed)
        for name in names:
            filename = self.routing.get(name, None)
            if filename is not None:
                return str(filename), name

            aliases = self.aliases.get(name, [])
            for alias in aliases:
                filename = self.routing.get(alias, None)
                if filename is not None:
                    return str(filename), alias
        raise RuntimeError(f"weight {tensor_name} does not exist")

    def _get_slice(self, tensor_name: str):
        filename, tensor_name = self.get_filename(tensor_name)
        f = self._get_handle(filename)
        slice_ = f.get_slice(tensor_name)
        return slice_

    def get_shape(self, tensor_name: str):
        return self._get_slice(tensor_name).get_shape()

    def get_tensor(self, tensor_name: str, to_device=True):
        filename, tensor_name = self.get_filename(tensor_name)
        f = self._get_handle(filename)
        tensor = f.get_tensor(tensor_name)
        # Special case for gptq which shouldn't convert
        # u4 which are disguised as int32. Exl2 uses int16
        # as well.
        if tensor.dtype not in [torch.int16, torch.int32, torch.int64]:
            tensor = tensor.to(dtype=self.dtype)
        if to_device:
            tensor = tensor.to(device=self.device)
        return tensor

    def get_partial_sharded(self, tensor_name: str, dim: int):
        filename, tensor_name = self.get_filename(tensor_name)
        f = self._get_handle(filename)
        slice_ = f.get_slice(tensor_name)
        world_size = self.process_group.size()
        rank = self.process_group.rank()

        size = slice_.get_shape()[dim]
        block_size = (size + world_size - 1) // world_size
        start = rank * block_size
        stop = (rank + 1) * block_size

        if dim == 0:
            tensor = slice_[start:stop]
        elif dim == 1:
            tensor = slice_[:, start:stop]
        else:
            raise NotImplementedError("Let's make that generic when needed")
        # Special case for gptq which shouldn't convert
        # u4 which are disguised as int32. exl2 uses int16.
        if tensor.dtype not in (torch.int16, torch.int32):
            tensor = tensor.to(dtype=self.dtype)
        tensor = tensor.to(device=self.device)
        return tensor

    def get_sharded(self, tensor_name: str, dim: int):
        filename, tensor_name = self.get_filename(tensor_name)
        f = self._get_handle(filename)
        slice_ = f.get_slice(tensor_name)
        world_size = self.process_group.size()
        size = slice_.get_shape()[dim]
        assert (
            size % world_size == 0
        ), f"The choosen size {size} is not compatible with sharding on {world_size} shards"
        return self.get_partial_sharded(tensor_name, dim)

    def get_packed_sharded(
        self, tensor_name: str, dim: int, block_sizes: Union[int, List[int]]
    ) -> torch.Tensor:
        """
        Get a shard from a tensor that packs multiple tensors.

        When a tensor packs multiple tensors (such as QKV or an up
        projection + gate projection), sharding with `get_sharded` is not
        safe since it would not split the packed tensors across shards.

        This method shards a tensor, such that the packed tensors are
        split across shards.

        The columns are split in equally sized blocks when blocks is an `int`, or
        in blocks proportional given to the sizes. For instance `[2, 1, 1]` will
        divide an input with dimensionality `1024` in `[512, 256, 256]`. This is
        convenient for e.g. splitting QKV without knowing the storage details of
        quantized weights.
        """
        slice_ = self._get_slice(tensor_name)
        total_size = slice_.get_shape()[dim]
        block_sizes = _blocks_to_block_sizes(total_size=total_size, blocks=block_sizes)

        world_size = self.process_group.size()
        rank = self.process_group.rank()

        tensors = []
        block_offset = 0
        for block_size in block_sizes:
            assert (
                block_size % world_size == 0
            ), f"Prepacked tensor cannot be sharded across {world_size} shards"
            shard_block_size = block_size // world_size
            start = rank * shard_block_size
            stop = (rank + 1) * shard_block_size
            if dim == 0:
                tensor = slice_[block_offset + start : block_offset + stop]
            elif dim == 1:
                tensor = slice_[:, block_offset + start : block_offset + stop]
            else:
                raise NotImplementedError("Currently only dim=0 or dim=1 is supported")
            tensors.append(tensor)
            block_offset += block_size
        tensor = torch.cat(tensors, dim=dim)
        tensor = tensor.to(device=self.device)

        # Avoid casting quantizer dtypes.
        if tensor.dtype not in [torch.int16, torch.int32, torch.int64]:
            tensor = tensor.to(dtype=self.dtype)

        return tensor

    def get_weights_col_packed_qkv(
        self,
        prefix: str,
        quantize: str,
        num_heads: int,
        num_key_value_heads: int,
    ):
        return self.get_weights_col_packed(
            prefix, quantize, [num_heads, num_key_value_heads, num_key_value_heads]
        )

    def get_weights_col_packed_gate_up(self, prefix: str, quantize: str):
        return self.get_weights_col_packed(prefix, quantize, 2)

    def get_weights_col_packed(
        self, prefix: str, quantize: str, block_sizes: Union[int, List[int]]
    ):
        """
        Highly specific when the underlying tensor is a simple cat of Q,K,V instead of being
        already alternating Q,K,V within the main tensor.

        The columns are split in equally sized blocks when blocks is an `int`, or
        in blocks proportional given to the sizes. For instance `[2, 1, 1]` will
        divide an input with dimensionality `1024` in `[512, 256, 256]`. This is
        convenient for e.g. splitting QKV without knowing the storage details of
        quantized weights.
        """
        if quantize in ["gptq", "awq"]:
            from text_generation_server.layers.gptq import GPTQWeight
            from text_generation_server.layers.marlin import (
                can_use_gptq_marlin,
                repack_gptq_for_marlin,
            )

            try:
                qweight = self.get_packed_sharded(
                    f"{prefix}.qweight", dim=1, block_sizes=block_sizes
                )
            except RuntimeError:
                raise RuntimeError(
                    f"Cannot load `{quantize}` weight, make sure the model is already quantized."
                )
            scales = self.get_packed_sharded(
                f"{prefix}.scales", dim=1, block_sizes=block_sizes
            )
            scales = scales.to(dtype=self.dtype)

            gptq_params = self._get_gptq_params()
            if can_use_gptq_marlin(gptq_params, quantize):
                g_idx = self.get_tensor(f"{prefix}.g_idx")
                return repack_gptq_for_marlin(
                    qweight=qweight,
                    scales=scales,
                    g_idx=g_idx,
                    bits=gptq_params.bits,
                    desc_act=gptq_params.desc_act,
                    groupsize=gptq_params.groupsize,
                    sym=gptq_params.sym,
                    sharded_infeatures=False,
                )

            qzeros = self.get_packed_sharded(
                f"{prefix}.qzeros", dim=1, block_sizes=block_sizes
            )
            if quantize == "gptq" and gptq_params.quant_method == "gptq":
                g_idx = self.get_tensor(f"{prefix}.g_idx")
            elif quantize == "gptq" and gptq_params.quant_method == "awq":
                log_once(
                    logger.info, "Converting AWQ model to Exllama/GPTQ packing format."
                )
                from text_generation_server.layers.awq.conversion_utils import (
                    fast_awq_to_gptq,
                )

                qweight, qzeros = fast_awq_to_gptq(qweight, qzeros)
                g_idx = (
                    torch.arange(
                        qweight.shape[0] * (32 // gptq_params.bits),
                        device=qweight.device,
                    )
                    // gptq_params.groupsize
                ).to(dtype=torch.int32)
            else:
                g_idx = None

            weight = GPTQWeight(
                qweight=qweight,
                qzeros=qzeros,
                scales=scales,
                g_idx=g_idx,
                bits=gptq_params.bits,
                groupsize=gptq_params.groupsize,
                use_exllama=False,
            )
        elif quantize == "marlin":
            from text_generation_server.layers.marlin import (
                GPTQMarlin24Weight,
                MarlinWeight,
                repack_gptq_for_marlin,
            )

            is_marlin_24 = getattr(self, "gptq_checkpoint_format", None) == "marlin_24"
            if is_marlin_24:
                B = self.get_packed_sharded(
                    f"{prefix}.B_24", dim=1, block_sizes=block_sizes
                )
                B_meta = self.get_packed_sharded(
                    f"{prefix}.B_meta", dim=1, block_sizes=block_sizes
                )
                s = self.get_packed_sharded(
                    f"{prefix}.s", dim=1, block_sizes=block_sizes
                )

                gptq_params = self._get_gptq_params()
                weight = GPTQMarlin24Weight(
                    B=B, B_meta=B_meta, s=s, bits=gptq_params.bits
                )
            else:
                B = self.get_packed_sharded(
                    f"{prefix}.B", dim=1, block_sizes=block_sizes
                )
                s = self.get_packed_sharded(
                    f"{prefix}.s", dim=1, block_sizes=block_sizes
                )
                weight = MarlinWeight(B=B, s=s)
        else:
            weight = self.get_packed_sharded(
                f"{prefix}.weight", dim=0, block_sizes=block_sizes
            )
        return weight

    def get_weights_col(self, prefix: str, quantize: str):
        if quantize == "exl2":
            from text_generation_server.layers.exl2 import Exl2Weight

            try:
                q_weight = self.get_tensor(f"{prefix}.q_weight")
            except RuntimeError:
                raise RuntimeError(
                    f"Cannot load `exl2`-quantized weight, make sure the model is already quantized."
                )

            q_scale = self.get_tensor(f"{prefix}.q_scale")
            q_invperm = self.get_tensor(f"{prefix}.q_invperm")
            q_scale_max = self.get_tensor(f"{prefix}.q_scale_max")
            q_groups = self.get_tensor(f"{prefix}.q_groups")

            return Exl2Weight(
                q_weight=q_weight,
                q_scale=q_scale,
                q_invperm=q_invperm,
                q_scale_max=q_scale_max,
                q_groups=q_groups,
            )

        return self.get_multi_weights_col([prefix], quantize, 0)

    def get_multi_weights_col(self, prefixes: List[str], quantize: str, dim: int):
        if quantize == "exl2":
            raise ValueError("get_multi_weights_col is not supported for exl2")
        elif quantize in ["gptq", "awq"]:
            from text_generation_server.layers.gptq import GPTQWeight
            from text_generation_server.layers.marlin import (
                can_use_gptq_marlin,
                repack_gptq_for_marlin,
            )

            try:
                qweight = torch.cat(
                    [self.get_sharded(f"{p}.qweight", dim=1) for p in prefixes], dim=1
                )
            except RuntimeError:
                raise RuntimeError(
                    f"Cannot load `{quantize}` weight, make sure the model is already quantized"
                )

            scales = torch.cat(
                [self.get_sharded(f"{p}.scales", dim=1) for p in prefixes], dim=1
            )

            gptq_params = self._get_gptq_params()
            if can_use_gptq_marlin(gptq_params, quantize):
                w = [self.get_tensor(f"{p}.g_idx") for p in prefixes]
                for w2 in w[1:]:
                    torch.testing.assert_close(w2, w[0])
                g_idx = w[0]

                return repack_gptq_for_marlin(
                    qweight=qweight,
                    scales=scales,
                    g_idx=g_idx,
                    bits=gptq_params.bits,
                    desc_act=gptq_params.desc_act,
                    groupsize=gptq_params.groupsize,
                    sym=gptq_params.sym,
                    sharded_infeatures=False,
                )

            qzeros = torch.cat(
                [self.get_sharded(f"{p}.qzeros", dim=1) for p in prefixes], dim=1
            )

            from text_generation_server.layers.gptq import HAS_EXLLAMA

            use_exllama = (
                gptq_params.bits == 4
                and HAS_EXLLAMA
                and quantize == "gptq"
                and not gptq_params.desc_act
            )

            if quantize == "gptq" and gptq_params.quant_method == "gptq":
                w = [self.get_tensor(f"{p}.g_idx") for p in prefixes]
                for w2 in w[1:]:
                    torch.testing.assert_close(w2, w[0])
                g_idx = w[0]
            elif quantize == "gptq" and gptq_params.quant_method == "awq":
                log_once(
                    logger.info, "Converting AWQ model to Exllama/GPTQ packing format."
                )
                from text_generation_server.layers.awq.conversion_utils import (
                    fast_awq_to_gptq,
                )

                qweight, qzeros = fast_awq_to_gptq(qweight, qzeros)
                if use_exllama:
                    g_idx = None
                else:
                    g_idx = (
                        torch.arange(
                            qweight.shape[0] * (32 // gptq_params.bits),
                            device=qweight.device,
                        )
                        // gptq_params.groupsize
                    ).to(dtype=torch.int32)
            else:
                g_idx = None

            weight = GPTQWeight(
                qweight=qweight,
                qzeros=qzeros,
                scales=scales,
                g_idx=g_idx,
                bits=gptq_params.bits,
                groupsize=gptq_params.groupsize,
                use_exllama=use_exllama,
            )
        elif quantize == "marlin":
            from text_generation_server.layers.gptq import GPTQWeight
            from text_generation_server.layers.marlin import (
                GPTQMarlin24Weight,
                MarlinWeight,
            )

            is_marlin_24 = getattr(self, "gptq_checkpoint_format", None) == "marlin_24"
            if is_marlin_24:
                try:
                    B = torch.cat(
                        [self.get_sharded(f"{p}.B_24", dim=1) for p in prefixes], dim=1
                    )
                except RuntimeError:
                    raise RuntimeError(
                        f"Cannot load `{quantize}` weight, make sure the model is already quantized"
                    )

                B_meta = torch.cat(
                    [self.get_sharded(f"{p}.B_meta", dim=1) for p in prefixes], dim=1
                )

                s = torch.cat(
                    [self.get_sharded(f"{p}.s", dim=1) for p in prefixes], dim=1
                )

                gptq_params = self._get_gptq_params()
                weight = GPTQMarlin24Weight(
                    B=B, B_meta=B_meta, s=s, bits=gptq_params.bits
                )
            else:
                try:
                    B = torch.cat(
                        [self.get_sharded(f"{p}.B", dim=1) for p in prefixes], dim=1
                    )
                except RuntimeError:
                    raise RuntimeError(
                        f"Cannot load `{quantize}` weight, make sure the model is already quantized"
                    )
                s = torch.cat(
                    [self.get_sharded(f"{p}.s", dim=1) for p in prefixes], dim=1
                )

                weight = MarlinWeight(B=B, s=s)

        else:
            w = [self.get_sharded(f"{p}.weight", dim=0) for p in prefixes]
            weight = torch.cat(w, dim=dim)

        return weight

    def get_tensor_shard(self, var, dim):
        world_size = self.process_group.size()
        rank = self.process_group.rank()
        block_size = var.size()[dim] // world_size
        start = rank * block_size
        stop = (rank + 1) * block_size
        if dim == 0:
            tensor = var[start:stop]
        elif dim == 1:
            tensor = var[:, start:stop]
        else:
            raise NotImplementedError("Let's make that generic when needed")
        tensor = tensor.to(dtype=self.dtype)
        tensor = tensor.to(device=self.device)
        return tensor

    def get_multi_weights_row(self, prefix: str, quantize: str):
        if quantize == "exl2":
            from text_generation_server.layers.exl2 import Exl2Weight

            try:
                q_weight = self.get_tensor(f"{prefix}.q_weight")
            except RuntimeError:
                raise RuntimeError(
                    f"Cannot load `exl2`-quantized weight, make sure the model is already quantized."
                )

            q_scale = self.get_tensor(f"{prefix}.q_scale")
            q_invperm = self.get_tensor(f"{prefix}.q_invperm")
            q_scale_max = self.get_tensor(f"{prefix}.q_scale_max")
            q_groups = self.get_tensor(f"{prefix}.q_groups")

            return Exl2Weight(
                q_weight=q_weight,
                q_scale=q_scale,
                q_invperm=q_invperm,
                q_scale_max=q_scale_max,
                q_groups=q_groups,
            )

        elif quantize == "gptq":
            from text_generation_server.layers.marlin import (
                can_use_gptq_marlin,
                repack_gptq_for_marlin,
            )

            gptq_params = self._get_gptq_params()
            if can_use_gptq_marlin(gptq_params, quantize):
                log_once(logger.info, "Using GPTQ-Marlin kernels")
                try:
                    qweight = self.get_sharded(f"{prefix}.qweight", dim=0)
                except RuntimeError:
                    raise RuntimeError(
                        f"Cannot load `{quantize}` weight for GPTQ -> Marlin repacking, make sure the model is already quantized"
                    )

                g_idx = self.get_sharded(f"{prefix}.g_idx", dim=0)
                if gptq_params.desc_act or gptq_params.groupsize == -1:
                    scales = self.get_tensor(f"{prefix}.scales")
                else:
                    scales = self.get_sharded(f"{prefix}.scales", dim=0)

                sharded_in_features = self.process_group.size() > 1

                return repack_gptq_for_marlin(
                    qweight=qweight,
                    scales=scales,
                    g_idx=g_idx,
                    bits=gptq_params.bits,
                    desc_act=gptq_params.desc_act,
                    groupsize=gptq_params.groupsize,
                    sym=gptq_params.sym,
                    sharded_infeatures=sharded_in_features,
                )

            use_exllama = True
            if gptq_params.bits != 4:
                use_exllama = False

            if gptq_params.desc_act:
                log_once(logger.warning, "Disabling exllama because desc_act=True")
                use_exllama = False

            try:
                qweight = self.get_sharded(f"{prefix}.qweight", dim=0)
            except RuntimeError:
                raise RuntimeError(
                    "Cannot load `gptq` weight, make sure the model is already quantized, or quantize it with `text-generation-server quantize ORIGINAL_MODEL_ID NEW_MODEL_ID`"
                )

            if gptq_params.quant_method == "gptq":
                g_idx = self.get_sharded(f"{prefix}.g_idx", dim=0)
            elif gptq_params.quant_method == "awq":
                g_idx = None

            if self.process_group.size() > 1:
                if g_idx is not None:
                    if (
                        not torch.equal(
                            g_idx.cpu(),
                            torch.tensor(
                                [
                                    i // gptq_params.groupsize
                                    for i in range(g_idx.shape[0])
                                ],
                                dtype=torch.int32,
                            ),
                        )
                        and not (g_idx == 0).all()
                    ):
                        # Exllama implementation does not support row tensor parallelism with act-order, as
                        # it would require to reorder input activations that are split unto several GPUs
                        use_exllama = False

            from text_generation_server.layers.gptq import (
                HAS_EXLLAMA,
                CAN_EXLLAMA,
                GPTQWeight,
            )

            if use_exllama:
                if not HAS_EXLLAMA:
                    if CAN_EXLLAMA:
                        log_once(
                            logger.warning,
                            "Exllama GPTQ cuda kernels (which are faster) could have been used, but are not currently installed, try using BUILD_EXTENSIONS=True",
                        )
                    use_exllama = False
                else:
                    log_once(logger.info, f"Using exllama kernels v{HAS_EXLLAMA}")

            if use_exllama and gptq_params.groupsize != -1:
                qzeros = self.get_sharded(f"{prefix}.qzeros", dim=0)
                scales = self.get_sharded(f"{prefix}.scales", dim=0)
            else:
                qzeros = self.get_tensor(f"{prefix}.qzeros")
                scales = self.get_tensor(f"{prefix}.scales")

            if use_exllama and g_idx is not None:
                g_idx = g_idx - g_idx[0]

            if gptq_params.quant_method == "awq":
                log_once(
                    logger.info, "Converting AWQ model to Exllama/GPTQ packing format."
                )
                from text_generation_server.layers.awq.conversion_utils import (
                    fast_awq_to_gptq,
                )

                qweight, qzeros = fast_awq_to_gptq(qweight, qzeros)
                if use_exllama:
                    g_idx = None
                else:
                    g_idx = (
                        torch.arange(
                            qweight.shape[0] * (32 // gptq_params.bits),
                            device=qweight.device,
                        )
                        // gptq_params.groupsize
                    ).to(dtype=torch.int32)

            weight = GPTQWeight(
                qweight=qweight,
                qzeros=qzeros,
                scales=scales,
                g_idx=g_idx,
                bits=gptq_params.bits,
                groupsize=gptq_params.groupsize,
                use_exllama=use_exllama,
            )
        elif quantize == "awq":
            from text_generation_server.layers.gptq import GPTQWeight

            gptq_params = self._get_gptq_params()

            try:
                qweight = self.get_sharded(f"{prefix}.qweight", dim=0)
            except RuntimeError:
                raise RuntimeError(
                    "Cannot load `awq` weight, make sure the model is already quantized"
                )

            qzeros = self.get_sharded(f"{prefix}.qzeros", dim=0)
            scales = self.get_sharded(f"{prefix}.scales", dim=0)
            g_idx = None
            use_exllama = False

            weight = GPTQWeight(
                qweight=qweight,
                qzeros=qzeros,
                scales=scales,
                g_idx=g_idx,
                bits=gptq_params.bits,
                groupsize=gptq_params.groupsize,
                use_exllama=use_exllama,
            )
        elif quantize == "marlin":
            from text_generation_server.layers.gptq import GPTQWeight
            from text_generation_server.layers.marlin import (
                GPTQMarlin24Weight,
                MarlinWeight,
            )

            is_marlin_24 = getattr(self, "gptq_checkpoint_format", None) == "marlin_24"
            if is_marlin_24:
                try:
                    B = self.get_sharded(f"{prefix}.B_24", dim=0)
                except RuntimeError:
                    raise RuntimeError(
                        "Cannot load `marlin` 2:4 sparsity weight, make sure the model is already quantized."
                    )

                B_meta = self.get_sharded(f"{prefix}.B_meta", dim=0)
                num_groups = self._get_slice(f"{prefix}.s").get_shape()[0]
                if num_groups == 1:
                    # The number of groups is 1 when groupsize == -1. share
                    # scales between all shards in this case.
                    s = self.get_tensor(f"{prefix}.s")
                else:
                    s = self.get_sharded(f"{prefix}.s", dim=0)

                gptq_params = self._get_gptq_params()
                weight = GPTQMarlin24Weight(
                    B=B, B_meta=B_meta, s=s, bits=gptq_params.bits
                )
            else:
                try:
                    B = self.get_sharded(f"{prefix}.B", dim=0)
                except RuntimeError:
                    raise RuntimeError(
                        "Cannot load `marlin` weight, make sure the model is already quantized."
                    )

                num_groups = self._get_slice(f"{prefix}.s").get_shape()[0]
                if num_groups == 1:
                    # The number of groups is 1 when groupsize == -1. share
                    # scales between all shards in this case.
                    s = self.get_tensor(f"{prefix}.s")
                else:
                    s = self.get_sharded(f"{prefix}.s", dim=0)
                weight = MarlinWeight(B=B, s=s)
        else:
            weight = self.get_sharded(f"{prefix}.weight", dim=1)
        return weight

    def _get_gptq_params(self) -> GPTQParams:
        try:
            bits = self.get_tensor("gptq_bits").item()
            groupsize = self.get_tensor("gptq_groupsize").item()
            checkpoint_format = getattr(self, "gptq_checkpoint_format", None)
            desc_act = False
            sym = False
            quant_method = "gptq"
        except (SafetensorError, RuntimeError) as e:
            try:
                bits = self.gptq_bits
                groupsize = self.gptq_groupsize
                checkpoint_format = getattr(self, "gptq_checkpoint_format", None)
                desc_act = getattr(self, "gptq_desc_act", False)
                quant_method = getattr(self, "quant_method", "gptq")
                sym = getattr(self, "sym", True)
            except Exception:
                raise e

        return GPTQParams(
            bits=bits,
            checkpoint_format=checkpoint_format,
            desc_act=desc_act,
            groupsize=groupsize,
            quant_method=quant_method,
            sym=sym,
        )

    def _set_gptq_params(self, model_id, revision):
        filename = "config.json"
        try:
            if os.path.exists(os.path.join(model_id, filename)):
                filename = os.path.join(model_id, filename)
            else:
                filename = hf_hub_download(
                    model_id, filename=filename, revision=revision
                )
            with open(filename, "r") as f:
                data = json.load(f)
            self.gptq_bits = data["quantization_config"]["bits"]
            self.gptq_groupsize = data["quantization_config"]["group_size"]
            # Order is important here, desc_act is missing on some real models
            self.quant_method = data["quantization_config"]["quant_method"]
            self.gptq_checkpoint_format = data["quantization_config"].get(
                "checkpoint_format"
            )
            self.gptq_sym = data["quantization_config"]["sym"]
            self.gptq_desc_act = data["quantization_config"]["desc_act"]
        except Exception:
            filename = "quantize_config.json"
            try:
                if os.path.exists(os.path.join(model_id, filename)):
                    filename = os.path.join(model_id, filename)
                else:
                    filename = hf_hub_download(
                        model_id, filename=filename, revision=revision
                    )
                with open(filename, "r") as f:
                    data = json.load(f)
                self.gptq_bits = data["bits"]
                self.gptq_groupsize = data["group_size"]
                self.gptq_sym = data["sym"]
                self.gptq_desc_act = data["desc_act"]
                if "version" in data and data["version"] == "GEMM":
                    self.quant_method = "awq"
            except Exception:
                filename = "quant_config.json"
                try:
                    if os.path.exists(os.path.join(model_id, filename)):
                        filename = os.path.join(model_id, filename)
                    else:
                        filename = hf_hub_download(
                            model_id, filename=filename, revision=revision
                        )
                    with open(filename, "r") as f:
                        data = json.load(f)
                    self.gptq_bits = data["w_bit"]
                    self.gptq_groupsize = data["q_group_size"]
                    self.gptq_desc_act = data["desc_act"]
                    if "version" in data and data["version"] == "GEMM":
                        self.quant_method = "awq"
                except Exception:
                    pass


def _blocks_to_block_sizes(total_size: int, blocks: Union[int, List[int]]) -> List[int]:
    """
    Convert block count or proportions to block sizes.

    This function accepts

    - The number of blocks (int), in which case the block size is
      total_size//blocks; or
    - A list of block sizes (List[int]).

    In the latter case, if sum(blocks) < total_size, the ratios between
    the block sizes will be preserved. For instance, if blocks is
    [2, 1, 1] and total_size is 1024, the returned block sizes are
    [512, 256, 256].
    """
    if isinstance(blocks, list):
        total_blocks = sum(blocks)
        assert (
            total_size % total_blocks == 0
        ), f"Cannot split {total_size} in proportional blocks: {blocks}"
        part_size = total_size // total_blocks
        return [part_size * block for block in blocks]
    else:
        assert total_size % blocks == 0, f"Prepacked is not divisible by {blocks}"
        single_size = total_size // blocks
        return [single_size] * blocks