tokens.py 23.1 KB
Newer Older
jixx's avatar
init  
jixx committed
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
import re
from typing import List, Optional, Tuple, Set, Union

import math
import torch
from text_generation_server.pb import generate_pb2
from text_generation_server.pb.generate_pb2 import FinishReason, GrammarType
from text_generation_server.utils.logits_process import (
    FrequencyPenaltyLogitsProcessor,
    GrammarLogitProcessor,
    HeterogeneousProcessorWrapper,
    HeterogeneousRepetitionPenaltyLogitsProcessor,
    HeterogeneousFrequencyPenaltyLogitsProcessor,
    HeterogeneousTemperatureLogitsWarper,
    HeterogeneousTopKLogitsWarper,
    HeterogeneousTopPLogitsWarper,
    HeterogeneousTypicalLogitsWarper,
    HeterogeneousGrammarLogitProcessor,
    static_warper,
)
from text_generation_server.utils.watermark import WatermarkLogitsProcessor
from transformers import PreTrainedTokenizerBase, RepetitionPenaltyLogitsProcessor


class NextTokenChooser:
    def __init__(
        self,
        watermark: bool = False,
        temperature: float = 1.0,
        repetition_penalty: float = 1.0,
        frequency_penalty: float = 0.0,
        top_k: Optional[int] = None,
        top_p: Optional[float] = None,
        typical_p: Optional[float] = None,
        do_sample: bool = False,
        seed: int = 0,
        device: str = "cpu",
        tokenizer: Optional[PreTrainedTokenizerBase] = None,
        grammar: str = "",
        grammar_type: GrammarType = GrammarType.GRAMMAR_TYPE_NONE,
        fsm_grammar_state: int = 0,
    ):
        self.watermark_processor = (
            WatermarkLogitsProcessor(device=device) if watermark else None
        )
        self.repetition_processor = (
            RepetitionPenaltyLogitsProcessor(penalty=repetition_penalty)
            if repetition_penalty and repetition_penalty != 1.0
            else None
        )
        self.frequency_processor = (
            FrequencyPenaltyLogitsProcessor(penalty=frequency_penalty)
            if frequency_penalty and frequency_penalty != 0.0
            else None
        )
        self.grammar_processor = (
            GrammarLogitProcessor(tokenizer, device, grammar, grammar_type)
            if grammar != ""
            else None
        )
        self.tokenizer = tokenizer

        has_warpers = (
            (temperature is not None and temperature != 1.0)
            or (top_k is not None and top_k != 0)
            or (top_p is not None and top_p < 1.0)
            or (typical_p is not None and typical_p < 1.0)
        )
        if has_warpers:
            self.static_warper = static_warper(
                temperature=temperature, top_k=top_k, top_p=top_p, typical_p=typical_p
            )
        else:
            self.static_warper = None

        sampling = do_sample or has_warpers

        self.choice = Sampling(seed, device) if sampling else Greedy()
        self.fsm_grammar_state = fsm_grammar_state
        self.grammar = grammar

    def __call__(self, input_ids, scores):
        if self.watermark_processor is not None:
            scores = self.watermark_processor(input_ids, scores)
        if self.repetition_processor is not None:
            scores = self.repetition_processor(input_ids, scores)
        if self.frequency_processor is not None:
            scores = self.frequency_processor(input_ids, scores)
        if self.grammar_processor is not None:
            scores = self.grammar_processor(scores, self.fsm_grammar_state)

        if self.static_warper is None:
            next_logprob = torch.log_softmax(scores, -1)
        else:
            scores, next_logprob = self.static_warper(scores)

        next_id = self.choice(scores[-1]).view(1, 1)

        return next_id, next_logprob

    def advance_grammar(self, next_id: int):
        if self.grammar_processor is not None:
            self.fsm_grammar_state = self.grammar_processor.advance(
                next_id, self.fsm_grammar_state
            )
        return self

    @classmethod
    def from_pb(
        cls,
        pb: generate_pb2.NextTokenChooserParameters,
        device: torch.device,
        tokenizer: PreTrainedTokenizerBase,
    ) -> "NextTokenChooser":
        return NextTokenChooser(
            watermark=pb.watermark,
            temperature=pb.temperature,
            repetition_penalty=pb.repetition_penalty,
            frequency_penalty=pb.frequency_penalty,
            top_k=pb.top_k,
            top_p=pb.top_p,
            typical_p=pb.typical_p,
            do_sample=pb.do_sample,
            seed=pb.seed,
            device=device,
            tokenizer=tokenizer,
            grammar=pb.grammar,
            grammar_type=pb.grammar_type,
        )


class StopSequenceCriteria:
    def __init__(self, stop_sequence: str):
        stop_sequence = re.escape(stop_sequence)
        self.regex = re.compile(f"{stop_sequence}$")

    def __call__(self, output: str) -> bool:
        if self.regex.findall(output):
            return True
        return False


class StoppingCriteria:
    def __init__(
        self,
        eos_token_ids: Optional[Union[Set[int], int]],
        stop_sequence_criterias: List[StopSequenceCriteria],
        max_new_tokens: int = 20,
        ignore_eos_token: bool = False,
    ):
        if eos_token_ids is None:
            eos_token_ids = set()
        elif isinstance(eos_token_ids, int):
            eos_token_ids = set([eos_token_ids])
        elif isinstance(eos_token_ids, set):
            eos_token_ids = eos_token_ids
        else:
            raise RuntimeError(
                f"eos_token_ids is of invalid type {type(eos_token_ids)}, expected int, None or set[int]"
            )
        self.eos_token_ids = eos_token_ids
        self.stop_sequence_criterias = stop_sequence_criterias
        self.max_new_tokens = max_new_tokens
        self.current_tokens = 0
        self.current_output = ""
        self.ignore_eos_token = ignore_eos_token

    def __call__(self, last_token: int, last_output: str) -> Tuple[bool, Optional[str]]:
        self.current_tokens += 1
        if self.current_tokens >= self.max_new_tokens:
            return True, FinishReason.FINISH_REASON_LENGTH

        if isinstance(last_token, torch.Tensor):
            last_token = last_token.item()

        if not self.ignore_eos_token and last_token in self.eos_token_ids:
            return True, FinishReason.FINISH_REASON_EOS_TOKEN

        if self.stop_sequence_criterias:
            self.current_output += last_output
            # There is no need to keep an output that is too long
            if len(self.current_output) > 300:
                # Slice to -200 to avoid doing it all the time
                self.current_output = self.current_output[-200:]
            for stop_sequence_criteria in self.stop_sequence_criterias:
                if stop_sequence_criteria(self.current_output):
                    return True, FinishReason.FINISH_REASON_STOP_SEQUENCE

        return False, None

    @classmethod
    def from_pb(
        cls,
        pb: generate_pb2.StoppingCriteriaParameters,
        tokenizer: PreTrainedTokenizerBase,
    ) -> "StoppingCriteria":
        stop_sequence_criterias = [
            StopSequenceCriteria(sequence) for sequence in pb.stop_sequences
        ]
        # TODO Hack because eos_token_id cannot be what we want.
        eos_token_id = getattr(tokenizer, "_eos_token_ids", tokenizer.eos_token_id)
        return StoppingCriteria(
            eos_token_id,
            stop_sequence_criterias,
            pb.max_new_tokens,
            pb.ignore_eos_token,
        )


def create_n_gram_speculation(
    input_ids: torch.Tensor,
    next_ids: torch.Tensor,
    accepted_ids: torch.Tensor,
    speculate: int,
    verbose: bool,
):
    # Very trivial approach, find first match in the string.
    # This is much less refined than actual n-gram but seems to work
    # relatively OK in grounded mode and is by far much faster with
    # much less worst case complexity as everything happens on device.
    B = accepted_ids.shape[0]
    device = input_ids.device
    seeds = next_ids[accepted_ids.cumsum(dim=-1) - 1]
    indices = (input_ids == seeds.unsqueeze(-1)).max(dim=1).indices + 1
    all_indices = indices.unsqueeze(-1).expand(B, speculate) + torch.arange(
        speculate, device=device
    )
    all_indices = torch.clamp(all_indices, max=input_ids.shape[1] - 1)

    speculative_ids = input_ids.gather(dim=-1, index=all_indices)
    return speculative_ids


class HeterogeneousNextTokenChooser:
    def __init__(
        self,
        dtype: torch.dtype,
        device: torch.device,
        watermark: List[bool],
        temperature: List[float],
        repetition_penalty: List[float],
        frequency_penalty: List[float],
        top_k: List[int],
        top_p: List[float],
        typical_p: List[float],
        do_sample: List[bool],
        seeds: List[int],
        tokenizer: PreTrainedTokenizerBase,
        grammars: List[str],
        grammar_types: List[int],
        fsm_grammar_states=List[int],
    ):
        warpers = []

        self.watermark_processor = (
            HeterogeneousProcessorWrapper(
                {
                    i: WatermarkLogitsProcessor(device=device)
                    for i, do_watermark in enumerate(watermark)
                    if do_watermark
                }
            )
            if any(watermark)
            else None
        )

        self.repetition_processor = (
            HeterogeneousRepetitionPenaltyLogitsProcessor(
                repetition_penalty, dtype, device
            )
            if any([x != 1.0 for x in repetition_penalty])
            else None
        )

        self.frequency_processor = (
            HeterogeneousFrequencyPenaltyLogitsProcessor(
                frequency_penalty, dtype, device
            )
            if any([x != 0.0 for x in frequency_penalty])
            else None
        )

        self.grammar_processor = (
            HeterogeneousGrammarLogitProcessor(
                tokenizer, device, grammars, grammar_types
            )
            if any([grammar != "" for grammar in grammars])
            else None
        )

        if any(x != 1.0 for x in temperature):
            do_sample = [
                sample or x != 1.0 for x, sample in zip(temperature, do_sample)
            ]
            warpers.append(
                HeterogeneousTemperatureLogitsWarper(temperature, dtype, device)
            )

        if any(x != 0 for x in top_k):
            do_sample = [sample or x != 0 for x, sample in zip(top_k, do_sample)]
            warpers.append(HeterogeneousTopKLogitsWarper(top_k, device))

        if any(x < 1.0 for x in top_p):
            do_sample = [sample or x < 1.0 for x, sample in zip(top_p, do_sample)]
            warpers.append(HeterogeneousTopPLogitsWarper(top_p, dtype, device))

        if any(x < 1.0 for x in typical_p):
            do_sample = [sample or x < 1.0 for x, sample in zip(typical_p, do_sample)]
            warpers.append(HeterogeneousTypicalLogitsWarper(typical_p, dtype, device))

        self.warpers = warpers

        if any(do_sample):
            self.choice = HeterogeneousSampling(do_sample, seeds, device)
        else:
            self.choice = Greedy()

        self.seeds = seeds
        self.do_sample = do_sample
        self.dtype = dtype
        self.device = device
        self.tokenizer = tokenizer
        self.fsm_grammar_states = fsm_grammar_states
        self.grammars = grammars
        self.grammar_types = grammar_types

    def __call__(
        self,
        input_ids: torch.Tensor,
        scores: torch.Tensor,
        speculate: int,
        speculated_ids: Optional[torch.Tensor] = None,
        speculative_scores: Optional[torch.Tensor] = None,
        verbose=False,
    ):
        if speculated_ids is not None:
            B = scores.shape[0] // (speculated_ids.shape[1] + 1)
            S = speculated_ids.shape[1] + 1
            scores = scores.view(B, S, -1)
        else:
            B = scores.shape[0]
            S = 1
            scores = scores.view(B, S, -1)

        next_ids = torch.zeros((B, S), device=scores.device, dtype=torch.long)

        for j in range(S):
            _scores = scores[:, j]
            if self.watermark_processor is not None:
                _scores = self.watermark_processor(input_ids, _scores)
            if self.repetition_processor is not None:
                _scores = self.repetition_processor(input_ids, _scores)
            if self.frequency_processor is not None:
                _scores = self.frequency_processor(input_ids, _scores)
            if self.grammar_processor is not None:
                _scores = self.grammar_processor(_scores, self.fsm_grammar_states)
            for warper in self.warpers:
                _scores = warper(input_ids, _scores)
            _next_ids = self.choice(_scores)
            scores[:, j] = _scores
            next_ids[:, j] = _next_ids
        next_ids = next_ids.view(B * S)
        allscores = scores.view(B * S, -1)
        alllogprobs = torch.log_softmax(allscores, -1)

        if speculated_ids is not None:
            accepted_ids = []
            B = next_ids.shape[0] // (speculated_ids.shape[1] + 1)
            S = speculated_ids.shape[1] + 1
            indices = []
            for i in range(B):
                _next_ids = next_ids[i * S : (i + 1) * S]
                _speculated_ids = speculated_ids[i]
                validate_speculative = _next_ids[:-1] == _speculated_ids
                index = i * S
                accepted = 1
                # First is always valid
                indices.append(index)
                for valid in validate_speculative.tolist():
                    if valid:
                        index += 1
                        accepted += 1
                        indices.append(index)
                    else:
                        break
                accepted_ids.append(accepted)

            accepted_ids = torch.tensor(
                accepted_ids, device=input_ids.device, dtype=input_ids.dtype
            )
            next_ids = next_ids[indices]
            logprobs = alllogprobs[indices]
            indices = torch.arange(B, device=input_ids.device) * S
            if speculative_scores is not None:
                speculative_scores = speculative_scores[indices + accepted_ids - 1]
        else:
            accepted_ids = torch.ones_like(next_ids)
            logprobs = alllogprobs

        next_logprobs = torch.gather(logprobs, 1, next_ids.view(-1, 1)).view(-1)

        if speculate > 0:
            if speculative_scores is not None:
                # Medusa provided some scores
                speculative_ids = Greedy()(speculative_scores)
            else:
                # n-gram
                speculative_ids = create_n_gram_speculation(
                    input_ids, next_ids, accepted_ids, speculate, verbose
                )
        else:
            speculative_ids = None

        return next_ids, next_logprobs, alllogprobs, accepted_ids, speculative_ids

    def advance_grammar(self, next_ids: List[int]):
        if self.grammar_processor is not None:
            other_new_states = self.grammar_processor.advance_batch(
                next_ids, self.fsm_grammar_states
            )
            self.fsm_grammar_states = other_new_states
        return self

    def advance_grammar_single(self, grammar_state_index: int, next_id: int):
        if self.grammar_processor is not None:
            self.fsm_grammar_states[grammar_state_index] = (
                self.grammar_processor.advance_at_index(
                    next_id,
                    self.fsm_grammar_states[grammar_state_index],
                    grammar_state_index,
                )
            )
        return self

    def filter(self, indices):
        if self.watermark_processor is not None:
            self.watermark_processor = self.watermark_processor.filter(indices)

        if self.repetition_processor is not None:
            self.repetition_processor = self.repetition_processor.filter(indices)

        if self.frequency_processor is not None:
            self.frequency_processor = self.frequency_processor.filter(indices)

        if self.grammar_processor is not None:
            self.grammar_processor = self.grammar_processor.filter(indices)

        filtered_warpers = []
        for warper in self.warpers:
            filtered_warper = warper.filter(indices)
            if filtered_warper is not None:
                filtered_warpers.append(filtered_warper)
        self.warpers = filtered_warpers

        self.seeds = [self.seeds[i] for i in indices]
        self.do_sample = [self.do_sample[i] for i in indices]

        new_grammars = []
        new_fsm_grammar_states = []
        new_grammar_types = []
        for i in indices:
            new_grammars.append(self.grammars[i])
            new_fsm_grammar_states.append(self.fsm_grammar_states[i])
            new_grammar_types.append(self.grammar_types[i])

        self.grammars = new_grammars
        self.fsm_grammar_states = new_fsm_grammar_states
        self.grammar_types = new_grammar_types

        if any(self.do_sample):
            self.choice.filter(indices)
        else:
            self.choice = Greedy()

        return self

    @classmethod
    def from_pb(
        cls,
        pb: List[generate_pb2.NextTokenChooserParameters],
        dtype: torch.dtype,
        device: torch.device,
        tokenizer: PreTrainedTokenizerBase,
        fsm_grammar_states: Optional[List[int]] = None,
    ) -> "HeterogeneousNextTokenChooser":
        return HeterogeneousNextTokenChooser(
            watermark=[pb_.watermark for pb_ in pb],
            temperature=[pb_.temperature for pb_ in pb],
            repetition_penalty=[pb_.repetition_penalty for pb_ in pb],
            frequency_penalty=[pb_.frequency_penalty for pb_ in pb],
            top_k=[pb_.top_k for pb_ in pb],
            top_p=[pb_.top_p for pb_ in pb],
            typical_p=[pb_.typical_p for pb_ in pb],
            do_sample=[pb_.do_sample for pb_ in pb],
            seeds=[pb_.seed for pb_ in pb],
            device=device,
            dtype=dtype,
            tokenizer=tokenizer,
            grammars=[pb_.grammar for pb_ in pb],
            grammar_types=[pb_.grammar_type for pb_ in pb],
            fsm_grammar_states=(
                fsm_grammar_states if fsm_grammar_states else [0] * len(pb)
            ),
        )


class Sampling:
    def __init__(self, seed: int, device: str = "cpu"):
        self.generator = torch.Generator(device)
        self.generator.manual_seed(seed)
        self.seed = seed

    def __call__(self, logits):
        probs = torch.nn.functional.softmax(logits, -1)
        # Avoid GPU<->CPU sync done by torch multinomial
        # See: https://github.com/pytorch/pytorch/blob/925a3788ec5c06db62ca732a0e9425a26a00916f/aten/src/ATen/native/Distributions.cpp#L631-L637
        q = torch.empty_like(probs).exponential_(1, generator=self.generator)
        return probs.div_(q).argmax()


class Greedy:
    def __call__(self, logits):
        return logits.argmax(dim=-1)


class HeterogeneousSampling:
    r"""
    Mixed greedy and probabilistic sampling. Compute both and pick the right one for each sample.
    """

    def __init__(self, do_sample: List[bool], seeds: List[int], device: torch.device):
        self.seeds = seeds

        self.greedy_indices = []
        self.sampling_mapping = {}
        for i, (sample, seed) in enumerate(zip(do_sample, seeds)):
            if sample:
                self.sampling_mapping[i] = Sampling(seed, device)
            else:
                self.greedy_indices.append(i)

        self.greedy = Greedy()

    def __call__(self, logits):
        out = torch.empty(logits.shape[0], dtype=torch.int64, device=logits.device)
        if self.greedy_indices:
            # Computing for all indices is faster than slicing
            torch.argmax(logits, -1, out=out)

        for i, sampling in self.sampling_mapping.items():
            out[i] = sampling(logits[i])
        return out

    def filter(self, indices):
        new_greedy_indices = []
        new_sampling_mapping = {}
        for i, idx in enumerate(indices):
            if idx in self.sampling_mapping:
                new_sampling_mapping[i] = self.sampling_mapping[idx]
            else:
                new_greedy_indices.append(i)

        self.greedy_indices = new_greedy_indices
        self.sampling_mapping = new_sampling_mapping
        return self


def batch_top_tokens(
    top_n_tokens: List[int],
    top_n_tokens_tensor: torch.Tensor,
    logprobs: torch.Tensor,
    accepted_ids: torch.Tensor,
) -> Tuple[List[List[List[int]]], List[List[List[float]]]]:
    """Find the top n most likely tokens for a batch of generations.

    When multiple tokens have equal probabilities and they don't all fit, the
    remaining tokens are also returned.
    """
    max_top_n = max(top_n_tokens)
    # Early exit when top_n_tokens is not used
    if max_top_n == 0:
        return [[[]]] * len(top_n_tokens), [[[]]] * len(top_n_tokens)

    batch_size = accepted_ids.shape[0]
    speculate_size = logprobs.shape[0] // batch_size
    top_n_tokens_tensor = top_n_tokens_tensor.repeat_interleave(speculate_size)
    # Ensure top_n doesn't exceed vocab size
    top_n_tokens = [
        min(tok, logprobs.size(-1))
        for tok in top_n_tokens
        for _ in range(speculate_size)
    ]

    # Parallel kthvalue adapted from https://discuss.pytorch.org/t/how-to-efficiently-get-the-k-th-largest-values-in-parallel/160529/2
    # Sorted topk is faster than torch.sort() since we only need a small subset
    sorted_top_k = torch.topk(logprobs, k=max_top_n, dim=-1, sorted=True).values

    nth_highest = torch.gather(
        sorted_top_k, 1, (top_n_tokens_tensor - 1).clip(min=0).unsqueeze(1)
    )
    nth_highest[nth_highest == -float("inf")] = torch.finfo(logprobs.dtype).min

    # Find the new "fuzzy" top n values
    top_n_indices = (logprobs >= nth_highest).nonzero()
    _, top_n_ishes = torch.unique_consecutive(top_n_indices[:, 0], return_counts=True)

    k = 1 if top_n_ishes.numel() == 0 else top_n_ishes.max()
    # Take a new topk for these new max n values
    top_k = torch.topk(logprobs, k=k, dim=1, sorted=True)

    top_n_ishes = top_n_ishes.tolist()
    top_indices = top_k.indices.tolist()
    top_values = top_k.values.tolist()

    batch_top_token_ids = []
    batch_top_token_logprobs = []
    accepted_ids_list = accepted_ids.tolist()
    for i, n_accepted_ids in enumerate(accepted_ids_list):
        start = speculate_size * i
        stop = speculate_size * (i + 1)
        _top_indices = top_indices[start:stop]
        _top_values = top_values[start:stop]
        _top_n_ishes = top_n_ishes[start:stop]
        _top_n_tokens = top_n_tokens[start:stop]

        _top_indices = _top_indices[:n_accepted_ids]
        _top_values = _top_values[:n_accepted_ids]
        _top_n_ishes = _top_n_ishes[:n_accepted_ids]
        _top_n_tokens = _top_n_tokens[:n_accepted_ids]

        row_top_token_ids = []
        row_top_token_logprobs = []

        for idxs, vals, n, req_n in zip(
            _top_indices, _top_values, _top_n_ishes, _top_n_tokens
        ):
            indices = idxs[:n] if req_n > 0 else []
            values = vals[:n] if req_n > 0 else []

            row_top_token_ids.append(indices)
            row_top_token_logprobs.append(values)

        batch_top_token_ids.append(row_top_token_ids)
        batch_top_token_logprobs.append(row_top_token_logprobs)

    return batch_top_token_ids, batch_top_token_logprobs