hub.py 8.88 KB
Newer Older
jixx's avatar
init  
jixx committed
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
import time
import os

from datetime import timedelta
from loguru import logger
from pathlib import Path
from typing import Optional, List

from huggingface_hub import file_download, hf_api, HfApi, hf_hub_download
from huggingface_hub.constants import HUGGINGFACE_HUB_CACHE
from huggingface_hub.utils import (
    LocalEntryNotFoundError,
    EntryNotFoundError,
    RevisionNotFoundError,  # noqa # Import here to ease try/except in other part of the lib
)

WEIGHTS_CACHE_OVERRIDE = os.getenv("WEIGHTS_CACHE_OVERRIDE", None)
HF_HUB_OFFLINE = os.environ.get("HF_HUB_OFFLINE", "0").lower() in ["true", "1", "yes"]


def _cached_adapter_weight_files(
    adapter_id: str, revision: Optional[str], extension: str
) -> List[str]:
    """Guess weight files from the cached revision snapshot directory"""
    d = _get_cached_revision_directory(adapter_id, revision)
    if not d:
        return []
    filenames = _adapter_weight_files_from_dir(d, extension)
    return filenames


def _cached_weight_files(
    model_id: str, revision: Optional[str], extension: str
) -> List[str]:
    """Guess weight files from the cached revision snapshot directory"""
    d = _get_cached_revision_directory(model_id, revision)
    if not d:
        return []
    filenames = _weight_files_from_dir(d, extension)
    return filenames


def _weight_hub_files_from_model_info(
    info: hf_api.ModelInfo, extension: str
) -> List[str]:
    return [
        s.rfilename
        for s in info.siblings
        if s.rfilename.endswith(extension)
        and len(s.rfilename.split("/")) == 1
        and "arguments" not in s.rfilename
        and "args" not in s.rfilename
        and "training" not in s.rfilename
    ]


def _weight_files_from_dir(d: Path, extension: str) -> List[str]:
    # os.walk: do not iterate, just scan for depth 1, not recursively
    # see _weight_hub_files_from_model_info, that's also what is
    # done there with the len(s.rfilename.split("/")) == 1 condition
    root, _, files = next(os.walk(str(d)))
    filenames = [
        os.path.join(root, f)
        for f in files
        if f.endswith(extension)
        and "arguments" not in f
        and "args" not in f
        and "adapter" not in f
        and "training" not in f
    ]
    return filenames


def _adapter_weight_files_from_dir(d: Path, extension: str) -> List[str]:
    # os.walk: do not iterate, just scan for depth 1, not recursively
    # see _weight_files_from_dir, that's also what is done there
    root, _, files = next(os.walk(str(d)))
    filenames = [
        os.path.join(root, f)
        for f in files
        if f.endswith(extension)
        and "arguments" not in f
        and "args" not in f
        and "training" not in f
    ]
    return filenames


def _adapter_config_files_from_dir(d: Path) -> List[str]:
    # os.walk: do not iterate, just scan for depth 1, not recursively
    # see _weight_files_from_dir, that's also what is done there
    root, _, files = next(os.walk(str(d)))
    filenames = [
        os.path.join(root, f)
        for f in files
        if f.endswith(".json") and "arguments" not in f and "args" not in f
    ]
    return filenames


def _get_cached_revision_directory(
    model_id: str, revision: Optional[str]
) -> Optional[Path]:
    if revision is None:
        revision = "main"

    repo_cache = Path(HUGGINGFACE_HUB_CACHE) / Path(
        file_download.repo_folder_name(repo_id=model_id, repo_type="model")
    )

    if not repo_cache.is_dir():
        # No cache for this model
        return None

    refs_dir = repo_cache / "refs"
    snapshots_dir = repo_cache / "snapshots"

    # Resolve refs (for instance to convert main to the associated commit sha)
    if refs_dir.is_dir():
        revision_file = refs_dir / revision
        if revision_file.exists():
            with revision_file.open() as f:
                revision = f.read()

    # Check if revision folder exists
    if not snapshots_dir.exists():
        return None
    cached_shas = os.listdir(snapshots_dir)
    if revision not in cached_shas:
        # No cache for this revision and we won't try to return a random revision
        return None

    return snapshots_dir / revision


def weight_hub_files(
    model_id: str, revision: Optional[str] = None, extension: str = ".safetensors"
) -> List[str]:
    """Get the weights filenames on the hub"""
    api = HfApi()

    if HF_HUB_OFFLINE:
        filenames = _cached_weight_files(model_id, revision, extension)
    else:
        # Online case, fetch model info from the Hub
        info = api.model_info(model_id, revision=revision)
        filenames = _weight_hub_files_from_model_info(info, extension)

    if not filenames:
        raise EntryNotFoundError(
            f"No {extension} weights found for model {model_id} and revision {revision}.",
            None,
        )

    return filenames


def try_to_load_from_cache(
    model_id: str, revision: Optional[str], filename: str
) -> Optional[Path]:
    """Try to load a file from the Hugging Face cache"""

    d = _get_cached_revision_directory(model_id, revision)
    if not d:
        return None

    # Check if file exists in cache
    cached_file = d / filename
    return cached_file if cached_file.is_file() else None


def weight_files(
    model_id: str, revision: Optional[str] = None, extension: str = ".safetensors"
) -> List[Path]:
    """Get the local files"""
    # Local model
    d = Path(model_id)
    if d.exists() and d.is_dir():
        local_files = _weight_files_from_dir(d, extension)
        if not local_files:
            raise FileNotFoundError(
                f"No local weights found in {model_id} with extension {extension}"
            )
        return [Path(f) for f in local_files]

    try:
        filenames = weight_hub_files(model_id, revision, extension)
    except EntryNotFoundError as e:
        if extension != ".safetensors":
            raise e
        # Try to see if there are pytorch weights
        pt_filenames = weight_hub_files(model_id, revision, extension=".bin")
        # Change pytorch extension to safetensors extension
        # It is possible that we have safetensors weights locally even though they are not on the
        # hub if we converted weights locally without pushing them
        filenames = [
            f"{Path(f).stem.lstrip('pytorch_')}.safetensors" for f in pt_filenames
        ]

    if WEIGHTS_CACHE_OVERRIDE is not None:
        files = []
        for filename in filenames:
            p = Path(WEIGHTS_CACHE_OVERRIDE) / filename
            if not p.exists():
                raise FileNotFoundError(
                    f"File {p} not found in {WEIGHTS_CACHE_OVERRIDE}."
                )
            files.append(p)
        return files

    files = []
    for filename in filenames:
        cache_file = try_to_load_from_cache(
            model_id, revision=revision, filename=filename
        )
        if cache_file is None:
            raise LocalEntryNotFoundError(
                f"File {filename} of model {model_id} not found in "
                f"{os.getenv('HUGGINGFACE_HUB_CACHE', 'the local cache')}. "
                f"Please run `text-generation-server download-weights {model_id}` first."
            )
        files.append(cache_file)

    return files


def download_weights(
    filenames: List[str], model_id: str, revision: Optional[str] = None
) -> List[Path]:
    """Download the safetensors files from the hub"""

    def download_file(fname, tries=5, backoff: int = 5):
        local_file = try_to_load_from_cache(model_id, revision, fname)
        if local_file is not None:
            logger.info(f"File {fname} already present in cache.")
            return Path(local_file)

        for idx in range(tries):
            try:
                logger.info(f"Download file: {fname}")
                stime = time.time()
                local_file = hf_hub_download(
                    filename=fname,
                    repo_id=model_id,
                    revision=revision,
                    local_files_only=HF_HUB_OFFLINE,
                )
                logger.info(
                    f"Downloaded {local_file} in {timedelta(seconds=int(time.time() - stime))}."
                )
                return Path(local_file)
            except Exception as e:
                if idx + 1 == tries:
                    raise e
                logger.error(e)
                logger.info(f"Retrying in {backoff} seconds")
                time.sleep(backoff)
                logger.info(f"Retry {idx + 1}/{tries - 1}")

    # We do this instead of using tqdm because we want to parse the logs with the launcher
    start_time = time.time()
    files = []
    for i, filename in enumerate(filenames):
        file = download_file(filename)

        elapsed = timedelta(seconds=int(time.time() - start_time))
        remaining = len(filenames) - (i + 1)
        eta = (elapsed / (i + 1)) * remaining if remaining > 0 else 0

        logger.info(f"Download: [{i + 1}/{len(filenames)}] -- ETA: {eta}")
        files.append(file)

    return files