seq2seq_lm.py 31.2 KB
Newer Older
jixx's avatar
init  
jixx committed
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
import torch
import time

from dataclasses import dataclass
from opentelemetry import trace
from transformers import AutoTokenizer, AutoModelForSeq2SeqLM, PreTrainedTokenizerBase
from typing import Optional, Tuple, List, Type, Dict

from text_generation_server.utils.chunks import concat_text_chunks
from text_generation_server.utils.tokens import batch_top_tokens
from text_generation_server.models import Model
from text_generation_server.models.types import (
    GeneratedText,
    Batch,
    Generation,
    Tokens,
)
from text_generation_server.pb import generate_pb2
from text_generation_server.utils import NextTokenChooser, StoppingCriteria, Sampling

tracer = trace.get_tracer(__name__)


@dataclass
class Seq2SeqLMBatch(Batch):
    batch_id: int
    requests: List[generate_pb2.Request]
    requests_idx_mapping: Dict[int, int]

    # Encoder values
    input_ids: Optional[torch.Tensor]
    attention_mask: torch.Tensor

    # Decoder values
    decoder_input_ids: torch.Tensor
    decoder_attention_mask: Optional[torch.Tensor]
    encoder_last_hidden_state: Optional[torch.Tensor]

    # All tokens
    all_decoder_input_ids: List[torch.Tensor]

    # Seq2SeqLM keeps track of both encoder and decoder attention keys and values
    past_key_values: Optional[List[Tuple]]

    # Lengths of all generations present in the batch
    input_lengths: List[int]
    decoder_input_lengths: List[int]
    prefix_offsets: List[int]
    read_offsets: List[int]

    # Generation helpers
    next_token_choosers: List[NextTokenChooser]
    stopping_criterias: List[StoppingCriteria]
    top_n_tokens: List[int]
    top_n_tokens_tensor: torch.Tensor

    # Metadata used for padding
    max_input_length: int
    max_decoder_input_length: int
    padding_right_offset: int

    # Maximum number of tokens this batch will grow to
    max_tokens: int

    def to_pb(self) -> generate_pb2.CachedBatch:
        """Convert a Seq2SeqLMBatch to a text_generation_server.v1.CachedBatch protobuf"""
        return generate_pb2.CachedBatch(
            id=self.batch_id,
            request_ids=[r.id for r in self.requests],
            size=len(self),
            max_tokens=self.max_tokens,
        )

    @classmethod
    def from_pb(
        cls,
        pb: generate_pb2.Batch,
        tokenizer: PreTrainedTokenizerBase,
        dtype: torch.dtype,
        device: torch.device,
    ) -> "Seq2SeqLMBatch":
        """Convert a text_generation_server.v1.Batch protobuf to a Seq2SeqLMBatch"""
        inputs = []
        next_token_choosers = []
        stopping_criterias = []
        top_n_tokens = []
        decoder_input_lengths = []
        prefix_offsets = []
        read_offsets = []
        requests_idx_mapping = {}

        # Parse batch
        max_truncation = 0
        padding_right_offset = 0
        max_decode_tokens = 0
        for i, r in enumerate(pb.requests):
            inputs.append(concat_text_chunks(r.input_chunks.chunks))
            requests_idx_mapping[r.id] = i
            decoder_input_lengths.append(1)
            next_token_choosers.append(
                NextTokenChooser.from_pb(r.parameters, device, tokenizer)
            )
            stopping_criteria = StoppingCriteria.from_pb(
                r.stopping_parameters, tokenizer
            )
            stopping_criterias.append(stopping_criteria)
            top_n_tokens.append(r.top_n_tokens)
            max_truncation = max(max_truncation, r.truncate)
            max_decode_tokens += stopping_criteria.max_new_tokens
            padding_right_offset = max(
                padding_right_offset, stopping_criteria.max_new_tokens
            )

        # Tokenize batch
        tokenized_inputs = tokenizer(
            inputs,
            return_tensors="pt",
            padding=True,
            return_token_type_ids=False,
            truncation=True,
            max_length=max_truncation,
        ).to(device)

        input_lengths = tokenized_inputs["attention_mask"].sum(1)
        max_input_length = input_lengths.max()

        # Decoder sequence only contains the bos_token
        decoder_input_ids = (
            torch.tensor(tokenizer.bos_token_id, device=device)
            .repeat(len(pb.requests))
            .view(-1, 1)
        )
        for _ in pb.requests:
            prefix_offsets.append(0)
            read_offsets.append(1)
        all_decoder_input_ids = decoder_input_ids.view(-1).split(1)
        top_n_tokens_tensor = torch.tensor(
            top_n_tokens, device=device, dtype=torch.int64
        )

        max_tokens = len(inputs) * (max_input_length + max_decode_tokens)

        return cls(
            batch_id=pb.id,
            requests=pb.requests,
            requests_idx_mapping=requests_idx_mapping,
            input_ids=tokenized_inputs["input_ids"],
            attention_mask=tokenized_inputs["attention_mask"],
            decoder_input_ids=decoder_input_ids,
            all_decoder_input_ids=list(all_decoder_input_ids),
            decoder_attention_mask=None,
            encoder_last_hidden_state=None,
            past_key_values=None,
            input_lengths=input_lengths.tolist(),
            decoder_input_lengths=decoder_input_lengths,
            prefix_offsets=prefix_offsets,
            read_offsets=read_offsets,
            next_token_choosers=next_token_choosers,
            stopping_criterias=stopping_criterias,
            top_n_tokens=top_n_tokens,
            top_n_tokens_tensor=top_n_tokens_tensor,
            max_input_length=max_input_length.item(),
            max_decoder_input_length=1,
            padding_right_offset=padding_right_offset,
            max_tokens=max_tokens,
        )

    @tracer.start_as_current_span("filter")
    def filter(self, request_ids: List[int]) -> Optional["Seq2SeqLMBatch"]:
        if len(request_ids) == 0:
            raise ValueError("Batch must have at least one request")
        if len(request_ids) == len(self):
            return self

        keep_indices = []

        # New values after filtering
        requests_idx_mapping = {}
        requests = []
        input_lengths = []
        decoder_input_lengths = []
        prefix_offsets = []
        read_offsets = []

        all_decoder_input_ids = []

        next_token_choosers = []
        stopping_criterias = []
        top_n_tokens = []

        max_input_length = 0
        max_decoder_input_length = 0
        padding_right_offset = 0

        total_remaining_decode_tokens = 0

        for i, request_id in enumerate(request_ids):
            idx = self.requests_idx_mapping[request_id]
            requests_idx_mapping[request_id] = i
            keep_indices.append(idx)

            requests.append(self.requests[idx])
            prefix_offsets.append(self.prefix_offsets[idx])
            read_offsets.append(self.read_offsets[idx])

            all_decoder_input_ids.append(self.all_decoder_input_ids[idx])

            request_input_length = self.input_lengths[idx]
            input_lengths.append(request_input_length)
            max_input_length = max(max_input_length, request_input_length)

            request_decoder_input_length = self.decoder_input_lengths[idx]
            decoder_input_lengths.append(request_decoder_input_length)
            max_decoder_input_length = max(
                max_decoder_input_length, request_decoder_input_length
            )

            next_token_choosers.append(self.next_token_choosers[idx])
            stopping_criteria = self.stopping_criterias[idx]
            stopping_criterias.append(stopping_criteria)
            top_n_tokens.append(self.top_n_tokens[idx])
            remaining_decode_tokens = (
                stopping_criteria.max_new_tokens - stopping_criteria.current_tokens
            )
            total_remaining_decode_tokens += remaining_decode_tokens
            padding_right_offset = max(padding_right_offset, remaining_decode_tokens)

        # Apply indices to input_ids, attention mask, past key values and other items that need to be cached
        self.decoder_input_ids = self.decoder_input_ids[keep_indices]
        self.attention_mask = self.attention_mask[keep_indices, -max_input_length:]
        if self.decoder_attention_mask is not None:
            self.decoder_attention_mask = self.decoder_attention_mask[
                keep_indices,
                -(self.padding_right_offset + max_decoder_input_length) : (
                    self.decoder_attention_mask.shape[1] - self.padding_right_offset
                )
                + padding_right_offset,
            ]

        self.encoder_last_hidden_state = self.encoder_last_hidden_state[
            keep_indices, -max_input_length:
        ]

        # Ensure that past_key_values tensors can be updated in-place
        if type(self.past_key_values[0]) == tuple:
            self.past_key_values = [
                [t for t in layer] for layer in self.past_key_values
            ]

        decoder_past_seq_len = max_decoder_input_length - 1
        for layer in self.past_key_values:
            layer[0] = layer[0][keep_indices, :, -decoder_past_seq_len:]
            layer[1] = layer[1][keep_indices, :, -decoder_past_seq_len:]
            layer[2] = layer[2][keep_indices, :, -max_input_length:]
            layer[3] = layer[3][keep_indices, :, -max_input_length:]

        top_n_tokens_tensor = self.top_n_tokens_tensor[keep_indices]
        max_tokens = (
            len(request_ids) * (max_input_length + max_decoder_input_length)
            + remaining_decode_tokens
        )

        self.requests = requests
        self.requests_idx_mapping = requests_idx_mapping
        self.input_ids = None
        self.all_decoder_input_ids = all_decoder_input_ids
        self.input_lengths = input_lengths
        self.decoder_input_lengths = decoder_input_lengths
        self.prefix_offsets = prefix_offsets
        self.read_offsets = read_offsets
        self.next_token_choosers = next_token_choosers
        self.stopping_criterias = stopping_criterias
        self.top_n_tokens = top_n_tokens
        self.top_n_tokens_tensor = top_n_tokens_tensor
        self.max_input_length = max_input_length
        self.max_decoder_input_length = max_decoder_input_length
        self.padding_right_offset = padding_right_offset
        self.max_tokens = max_tokens

        return self

    @classmethod
    @tracer.start_as_current_span("concatenate")
    def concatenate(cls, batches: List["Seq2SeqLMBatch"]) -> "Seq2SeqLMBatch":
        """Concatenate multiple batches together by padding internal torch tensors"""

        # Used for padding
        total_batch_size = 0
        max_input_length = 0
        max_decoder_input_length = 0
        padding_right_offset = 0
        for batch in batches:
            total_batch_size += len(batch)
            max_input_length = max(max_input_length, batch.max_input_length)
            max_decoder_input_length = max(
                max_decoder_input_length, batch.max_decoder_input_length
            )
            padding_right_offset = max(padding_right_offset, batch.padding_right_offset)

        # Batch attributes
        requests = []
        requests_idx_mapping = {}
        all_decoder_input_ids = []
        input_lengths = []
        decoder_input_lengths = []
        prefix_offsets = []
        read_offsets = []
        next_token_choosers = []
        stopping_criterias = []
        top_n_tokens = []
        max_tokens = 0

        # Batch tensors
        attention_mask = None
        decoder_input_ids = None
        decoder_attention_mask = None
        encoder_last_hidden_state = None
        top_n_tokens_tensor = None
        past_key_values = []

        # Used for slicing correctly inside the tensors
        # Equivalent to a cumsum on batch sizes
        start_index = 0

        for i, batch in enumerate(batches):
            # Extend all list attributes
            requests.extend(batch.requests)
            all_decoder_input_ids.extend(batch.all_decoder_input_ids)
            input_lengths.extend(batch.input_lengths)
            decoder_input_lengths.extend(batch.decoder_input_lengths)
            prefix_offsets.extend(batch.prefix_offsets)
            read_offsets.extend(batch.read_offsets)
            next_token_choosers.extend(batch.next_token_choosers)
            stopping_criterias.extend(batch.stopping_criterias)
            top_n_tokens.extend(batch.top_n_tokens)

            if i == 0:
                requests_idx_mapping = batch.requests_idx_mapping
            else:
                # We need to offset the mapping for each batch by the cumulative batch size
                for k, v in batch.requests_idx_mapping.items():
                    requests_idx_mapping[k] = v + start_index

            # Slicing end index for this batch
            end_index = start_index + len(batch)

            # We only concatenate batches that did at least one step
            if batch.encoder_last_hidden_state is None:
                raise ValueError("Batch encoder_last_hidden_state cannot be None")

            # Create padded tensor
            if attention_mask is None:
                attention_mask = batch.attention_mask.new_zeros(
                    (total_batch_size, max_input_length),
                )
            # Copy to correct indices
            attention_mask[start_index:end_index, -batch.max_input_length :] = (
                batch.attention_mask[:, -batch.max_input_length :]
            )

            # Create padded tensor
            if decoder_input_ids is None:
                decoder_input_ids = batch.decoder_input_ids.new_zeros(
                    (total_batch_size, 1),
                )
            # Copy to correct indices
            decoder_input_ids[start_index:end_index] = batch.decoder_input_ids

            # Create padded tensor
            if decoder_attention_mask is None:
                # As decoder_attention_mask might not exist, we use `batch.attention_mask` for device here
                decoder_attention_mask = batch.attention_mask.new_zeros(
                    (total_batch_size, max_decoder_input_length + padding_right_offset),
                )
            # If the decoder mask does not exist yet, all generations started at the same time and we never concatenated
            # this batch. All generations are of length `batch.max_decoder_input_length`.
            left_offset = max_decoder_input_length - batch.max_decoder_input_length
            if batch.decoder_attention_mask is None:
                decoder_attention_mask[
                    start_index:end_index,
                    left_offset:-padding_right_offset,
                ] = 1
            # If it exists, we need to index
            else:
                batch_left_offset = (
                    batch.decoder_attention_mask.shape[1]
                    - batch.max_decoder_input_length
                    - batch.padding_right_offset
                )
                decoder_attention_mask[
                    start_index:end_index,
                    left_offset:-padding_right_offset,
                ] = batch.decoder_attention_mask[
                    :,
                    batch_left_offset : -batch.padding_right_offset,
                ]

            # Create padded tensor
            if encoder_last_hidden_state is None:
                encoder_last_hidden_state = batch.encoder_last_hidden_state.new_zeros(
                    (
                        total_batch_size,
                        max_input_length,
                        batch.encoder_last_hidden_state.shape[-1],
                    ),
                )

            if top_n_tokens_tensor is None:
                top_n_tokens_tensor = batches[0].top_n_tokens_tensor.new_zeros(
                    total_batch_size,
                )
            top_n_tokens_tensor[start_index:end_index] = batch.top_n_tokens_tensor

            # Copy to correct indices
            encoder_last_hidden_state[
                start_index:end_index, -batch.max_input_length :, :
            ] = batch.encoder_last_hidden_state[:, -batch.max_input_length :, :]
            batch.encoder_last_hidden_state = None

            # Ensure that we can update tensors in-place
            if type(batch.past_key_values[0]) == tuple:
                batch.past_key_values = [
                    [t for t in layer] for layer in batch.past_key_values
                ]

            # Add eventual padding tokens that were added while concatenating
            max_tokens += batch.max_tokens + (
                max_input_length
                - batch.max_input_length
                + max_decoder_input_length
                - batch.max_decoder_input_length
            ) * len(batch)

            start_index = end_index

        # Determine shapes for new past kv tensors
        first_past_kvs = batches[0].past_key_values
        _, num_heads, _, head_dim = first_past_kvs[0][0].shape

        padded_dec_t_shape = (
            total_batch_size,
            num_heads,
            (max_decoder_input_length - 1),
            head_dim,
        )

        padded_enc_t_shape = (
            total_batch_size,
            num_heads,
            max_input_length,
            head_dim,
        )

        # Iterate over attention layers
        for j in range(len(first_past_kvs)):
            past_key_values.append([])

            # Decoder past
            for k in range(0, 2):
                # Initialize tensors
                padded_past_values = first_past_kvs[j][k].new_zeros(padded_dec_t_shape)
                past_key_values[j].append(padded_past_values)

                start_index = 0
                for batch in batches:
                    t = batch.past_key_values[j][k]
                    # Clear reference to the original tensor
                    batch.past_key_values[j][k] = None
                    # Slicing end index for this batch
                    end_index = start_index + len(batch)
                    # We slice the past keys and values to remove the padding from previous batches
                    past_seq_len = batch.max_decoder_input_length - 1
                    padded_past_values[start_index:end_index, :, -past_seq_len:, :] = t[
                        :, :, -past_seq_len:, :
                    ]
                    del t

                    start_index = end_index

            # Encoder past
            for k in range(2, 4):
                # Initialize tensors
                padded_past_values = first_past_kvs[j][k].new_zeros(padded_enc_t_shape)
                past_key_values[j].append(padded_past_values)

                start_index = 0
                for batch in batches:
                    t = batch.past_key_values[j][k]
                    # Clear reference to the original tensor
                    batch.past_key_values[j][k] = None
                    # Slicing end index for this batch
                    end_index = start_index + len(batch)
                    # We slice the past keys and values to remove the padding from previous batches
                    padded_past_values[
                        start_index:end_index, :, -batch.max_input_length :, :
                    ] = t[:, :, -batch.max_input_length :, :]
                    del t

                    start_index = end_index

        return cls(
            batch_id=batches[0].batch_id,
            requests=requests,
            requests_idx_mapping=requests_idx_mapping,
            input_ids=None,
            attention_mask=attention_mask,
            decoder_input_ids=decoder_input_ids,
            all_decoder_input_ids=all_decoder_input_ids,
            decoder_attention_mask=decoder_attention_mask,
            encoder_last_hidden_state=encoder_last_hidden_state,
            past_key_values=past_key_values,
            input_lengths=input_lengths,
            decoder_input_lengths=decoder_input_lengths,
            prefix_offsets=prefix_offsets,
            read_offsets=read_offsets,
            next_token_choosers=next_token_choosers,
            stopping_criterias=stopping_criterias,
            top_n_tokens=top_n_tokens,
            top_n_tokens_tensor=top_n_tokens_tensor,
            max_input_length=max_input_length,
            max_decoder_input_length=max_decoder_input_length,
            padding_right_offset=padding_right_offset,
            max_tokens=max_tokens,
        )

    def __len__(self):
        return len(self.requests)


class Seq2SeqLM(Model):
    def __init__(
        self,
        model_id: str,
        revision: Optional[str] = None,
        quantize: Optional[str] = None,
        speculator: Optional[str] = None,
        dtype: Optional[torch.dtype] = None,
        trust_remote_code: bool = False,
    ):
        if speculator:
            raise RuntimeError("Speculator decoding is not enabled for AutoModel")

        if torch.cuda.is_available():
            device = torch.device("cuda")
            dtype = torch.float16 if dtype is None else dtype
        else:
            if quantize:
                raise ValueError("quantization is not available on CPU")

            device = torch.device("cpu")
            dtype = torch.float32 if dtype is None else dtype

        model = AutoModelForSeq2SeqLM.from_pretrained(
            model_id,
            revision=revision,
            torch_dtype=dtype,
            device_map=(
                "auto"
                if torch.cuda.is_available() and torch.cuda.device_count() > 1
                else None
            ),
            load_in_8bit=quantize == "bitsandbytes",
            trust_remote_code=trust_remote_code,
        )
        if torch.cuda.is_available() and torch.cuda.device_count() == 1:
            model = model.cuda()

        tokenizer = AutoTokenizer.from_pretrained(
            model_id,
            revision=revision,
            padding_side="left",
            truncation_side="left",
            trust_remote_code=trust_remote_code,
        )
        tokenizer.bos_token_id = model.config.decoder_start_token_id

        super(Seq2SeqLM, self).__init__(
            model_id=model_id,
            model=model,
            tokenizer=tokenizer,
            requires_padding=True,
            dtype=dtype,
            device=device,
        )

    @property
    def batch_type(self) -> Type[Seq2SeqLMBatch]:
        return Seq2SeqLMBatch

    def decode(self, decoder_ids: List[int]) -> str:
        return self.tokenizer.decode(
            decoder_ids, skip_special_tokens=True, clean_up_tokenization_spaces=False
        )

    def forward(
        self,
        input_ids,
        attention_mask,
        decoder_input_ids,
        decoder_attention_mask: Optional,
        encoder_last_hidden_state: Optional,
        past_key_values: Optional = None,
    ) -> Tuple[
        torch.Tensor,
        Optional[torch.Tensor],
        torch.Tensor,
        List[Tuple[torch.Tensor, torch.Tensor, torch.Tensor, torch.Tensor]],
    ]:
        # Model Forward
        outputs = self.model.forward(
            input_ids=input_ids,
            attention_mask=attention_mask,
            decoder_input_ids=decoder_input_ids,
            decoder_attention_mask=decoder_attention_mask,
            encoder_outputs=encoder_last_hidden_state,
            past_key_values=past_key_values,
            use_cache=True,
        )
        if isinstance(outputs, tuple):
            # Our custom models
            outputs, speculative_logits = outputs
        else:
            # Generic transformers models
            speculative_logits = None
        return (
            outputs.logits,
            speculative_logits,
            outputs.encoder_last_hidden_state,
            outputs.past_key_values,
        )

    @tracer.start_as_current_span("generate_token")
    def generate_token(
        self, batch: Seq2SeqLMBatch
    ) -> Tuple[List[Generation], Optional[Seq2SeqLMBatch], Tuple[int, int]]:
        start = time.time_ns()
        if batch.decoder_attention_mask is not None:
            # slice to the correct shape
            decoder_attention_mask = batch.decoder_attention_mask[
                :, : -batch.padding_right_offset
            ]
        else:
            decoder_attention_mask = None

        # Wrap `encoder_last_hidden_state` because for some reason, Transformers does a `encoder_last_hidden_state[0]`
        # internally...
        if batch.encoder_last_hidden_state is not None:
            encoder_last_hidden_state = [batch.encoder_last_hidden_state]
        else:
            encoder_last_hidden_state = None

        logits, speculative_logits, encoder_last_hidden_state, past = self.forward(
            batch.input_ids,
            batch.attention_mask,
            batch.decoder_input_ids,
            decoder_attention_mask,
            encoder_last_hidden_state,
            batch.past_key_values,
        )

        # Speculation is not active for seq2seq
        accepted_ids = torch.ones_like(batch.decoder_input_ids)[:, 0]
        batch_top_token_ids, batch_top_token_logprobs = batch_top_tokens(
            batch.top_n_tokens,
            batch.top_n_tokens_tensor,
            torch.log_softmax(logits[:, -1], -1),
            accepted_ids,
        )

        start_decode = time.time_ns()

        # Finished requests
        generations: List[Generation] = []
        stopped = True

        # Zipped iterator
        iterator = zip(
            batch.requests,
            batch.input_lengths,
            batch.prefix_offsets,
            batch.read_offsets,
            batch.decoder_input_lengths,
            logits,
            batch.next_token_choosers,
            batch.stopping_criterias,
            batch.all_decoder_input_ids,
            batch.top_n_tokens,
            batch_top_token_ids,
            batch_top_token_logprobs,
        )

        # For each member of the batch
        for i, (
            request,
            input_length,
            prefix_offset,
            read_offset,
            decoder_input_length,
            logits,
            next_token_chooser,
            stopping_criteria,
            all_decoder_input_ids,
            top_n_tokens,
            top_token_ids,
            top_token_logprobs,
        ) in enumerate(iterator):
            # Select next token
            next_token_id, logprobs = next_token_chooser(
                all_decoder_input_ids.view(1, -1), logits[-1:, :]
            )

            # Append next token to decoder tokens
            all_decoder_input_ids = torch.cat(
                [all_decoder_input_ids, next_token_id.squeeze(1)]
            )
            new_decoder_input_length = decoder_input_length + 1

            # Generated token
            next_token_logprob = logprobs[-1, next_token_id]
            next_token_id_squeezed = next_token_id.squeeze()
            next_token_text, prefix_offset, read_offset = self.decode_token(
                all_decoder_input_ids, prefix_offset, read_offset
            )

            # Evaluate stopping criteria
            stop, reason = stopping_criteria(next_token_id, next_token_text)

            if not stop:
                stopped = False

            # Shard generations
            # All generations will be appended in the rust sharded client
            if i % self.world_size == self.rank:
                if stop:
                    # Slice with decoder_input_length to remove padding
                    # Decode all tokens
                    output_text, _, _ = self.decode_token(
                        all_decoder_input_ids,
                        prefix_offset=len(all_decoder_input_ids)
                        - decoder_input_length
                        - 1,
                        read_offset=len(all_decoder_input_ids) - decoder_input_length,
                        skip_special_tokens=True,
                    )

                    # Get seed
                    if isinstance(next_token_chooser.choice, Sampling):
                        seed = next_token_chooser.choice.seed
                    else:
                        seed = None

                    generated_text = GeneratedText(
                        output_text, stopping_criteria.current_tokens, reason, seed
                    )
                else:
                    generated_text = None

                # Prefill
                if stopping_criteria.current_tokens == 1 and request.prefill_logprobs:
                    prefill_tokens = Tokens(
                        [self.tokenizer.bos_token_id],
                        [float("nan")],
                        [self.tokenizer.bos_token],
                        [False],
                    )
                else:
                    prefill_tokens = None

                if top_n_tokens > 0:
                    all_top_tokens = []
                    for top_token_ids, top_token_logprobs in zip(
                        top_token_ids, top_token_logprobs
                    ):
                        toptoken_texts = self.tokenizer.batch_decode(
                            top_token_ids,
                            clean_up_tokenization_spaces=False,
                            skip_special_tokens=False,
                        )
                        special_toptokens = [
                            token_id in self.all_special_ids
                            for token_id in top_token_ids
                        ]
                        top_tokens = Tokens(
                            top_token_ids,
                            top_token_logprobs,
                            toptoken_texts,
                            special_toptokens,
                        )
                        all_top_tokens.append(top_tokens)
                    top_tokens = all_top_tokens
                else:
                    top_tokens = None

                generation = Generation(
                    request.id,
                    prefill_tokens,
                    Tokens(
                        [next_token_id_squeezed],
                        [next_token_logprob],
                        [next_token_text],
                        [next_token_id_squeezed.item() in self.all_special_ids],
                    ),
                    generated_text,
                    top_tokens,
                )

                generations.append(generation)

            # Update values
            batch.next_token_choosers[i] = batch.next_token_choosers[i].advance_grammar(
                next_token_id_squeezed.item()
            )
            batch.decoder_input_ids[i] = next_token_id
            batch.all_decoder_input_ids[i] = all_decoder_input_ids
            batch.input_lengths[i] = input_length
            batch.decoder_input_lengths[i] = new_decoder_input_length
            batch.prefix_offsets[i] = prefix_offset
            batch.read_offsets[i] = read_offset
            batch.max_input_length = max(batch.max_input_length, input_length)
            batch.max_decoder_input_length = max(
                batch.max_decoder_input_length, new_decoder_input_length
            )

        # We finished all generations in the batch; there is no next batch
        if stopped:
            forward_ns = start_decode - start
            decode_ns = time.time_ns() - start_decode
            return generations, None, (forward_ns, decode_ns)

        # We don't need input_ids after the prefill forward
        batch.input_ids = None
        batch.encoder_last_hidden_state = encoder_last_hidden_state
        batch.past_key_values = past
        # Update decoder_attention_mask as we added a new token to input_ids
        if batch.decoder_attention_mask is not None:
            batch.decoder_attention_mask[:, -batch.padding_right_offset] = 1
        batch.padding_right_offset -= 1

        forward_ns = start_decode - start
        decode_ns = time.time_ns() - start_decode
        return generations, batch, (forward_ns, decode_ns)