flash_llama.py 5.63 KB
Newer Older
jixx's avatar
init  
jixx committed
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
import os
import torch
import torch.distributed

from opentelemetry import trace
from transformers import AutoConfig, AutoTokenizer, GenerationConfig
from typing import Optional, Tuple, Dict, List

from text_generation_server.models import FlashCausalLM
from text_generation_server.models.custom_modeling.flash_llama_modeling import (
    FlashLlamaForCausalLM,
)
from text_generation_server.utils import (
    initialize_torch_distributed,
    weight_files,
    Weights,
    hub,
)

tracer = trace.get_tracer(__name__)

from text_generation_server.utils.import_utils import SYSTEM

ADAPTER_LAYERS = [
    "q_proj",
    "k_proj",
    "v_proj",
    "o_proj",
    "gate_proj",
    "up_proj",
    "down_proj",
]
ROW_PARALLEL = {"o_proj", "down_proj", "lm_head"}


class FlashLlama(FlashCausalLM):
    def __init__(
        self,
        model_id: str,
        revision: Optional[str] = None,
        quantize: Optional[str] = None,
        speculator: Optional[str] = None,
        dtype: Optional[torch.dtype] = None,
        trust_remote_code: bool = False,
        lora_adapter_ids: Optional[list] = [],
    ):
        self.process_group, rank, world_size = initialize_torch_distributed()
        if torch.cuda.is_available():
            device = torch.device(f"cuda:{rank}")
            dtype = torch.float16 if dtype is None else dtype
        elif SYSTEM == "ipex":
            if hasattr(torch, "xpu") and torch.xpu.is_available():
                device = torch.device(f"xpu:{rank}")
                dtype = torch.float16 if dtype is None else dtype
            else:
                device = torch.device("cpu")
                dtype = torch.bfloat16 if dtype is None else dtype
        else:
            raise NotImplementedError("FlashLlama is only available on GPU")

        tokenizer = AutoTokenizer.from_pretrained(
            model_id,
            revision=revision,
            padding_side="left",
            truncation_side="left",
            trust_remote_code=trust_remote_code,
        )
        try:
            generation_config = GenerationConfig.from_pretrained(
                model_id, revision=revision, trust_remote_code=trust_remote_code
            )
            if isinstance(generation_config.eos_token_id, (list, set)):
                # TODO Huge hack
                tokenizer._eos_token_ids = set(generation_config.eos_token_id)
        except Exception:
            pass

        config = AutoConfig.from_pretrained(
            model_id, revision=revision, trust_remote_code=trust_remote_code
        )
        config.quantize = quantize
        config.speculator = speculator

        torch.distributed.barrier(group=self.process_group)

        filenames = weight_files(model_id, revision=revision, extension=".safetensors")
        weights = Weights(filenames, device, dtype, process_group=self.process_group)
        if config.quantize in ["awq", "exl2", "gptq", "marlin"]:
            weights._set_gptq_params(model_id, revision)

        prefix = ""
        model = FlashLlamaForCausalLM(prefix, config, weights)
        torch.distributed.barrier(group=self.process_group)
        super(FlashLlama, self).__init__(
            model_id=model_id,
            model=model,
            tokenizer=tokenizer,
            num_layers=len(model.model.layers),
            num_kv_heads=model.model.num_key_value_heads,
            head_size=model.model.head_size,
            dtype=dtype,
            device=device,
            rank=rank,
            world_size=world_size,
        )

    @property
    def supports_adapter_loading(self) -> bool:
        return True

    def adapter_target_to_layer(self) -> Dict[str, Tuple[str, torch.Tensor]]:
        layer_weights = {}

        prefix = "model.layers"

        # This accounts for VLMs (e.g. LlavaNext, Idefics2)
        # that have a language_model inside of the larger model.
        if hasattr(self.model, "language_model"):
            _model = self.model.language_model
        elif hasattr(self.model, "text_model"):
            _model = self.model.text_model
        else:
            _model = self.model

        for i, layer in enumerate(_model.model.layers):
            layer_weights[(i, "q_proj")] = (
                f"{prefix}.{i}.self_attn.q_proj",
                layer.self_attn.query_key_value,
            )
            layer_weights[(i, "k_proj")] = (
                f"{prefix}.{i}.self_attn.k_proj",
                layer.self_attn.query_key_value,
            )
            layer_weights[(i, "v_proj")] = (
                f"{prefix}.{i}.self_attn.v_proj",
                layer.self_attn.query_key_value,
            )
            layer_weights[(i, "o_proj")] = (
                f"{prefix}.{i}.self_attn.o_proj",
                layer.self_attn.o_proj,
            )

            layer_weights[(i, "gate_proj")] = (
                f"{prefix}.{i}.mlp.gate_proj",
                layer.mlp.gate_up_proj,
            )
            layer_weights[(i, "up_proj")] = (
                f"{prefix}.{i}.mlp.up_proj",
                layer.mlp.gate_up_proj,
            )
            layer_weights[(i, "down_proj")] = (
                f"{prefix}.{i}.mlp.down_proj",
                layer.mlp.down_proj,
            )

        layer_weights[(0, "lm_head")] = ("lm_head", _model.lm_head)
        return layer_weights

    @property
    def adapter_layers(self) -> List[str]:
        return ADAPTER_LAYERS

    @property
    def default_traced_adapter_layers(self) -> List[str]:
        return ["q_proj", "v_proj"]

    def get_num_layers_for_type(self, layer_type: str) -> int:
        return 1 if layer_type == "lm_head" else len(self.model.model.layers)

    def is_row_parallel(self, layer_type: str) -> bool:
        return layer_type in ROW_PARALLEL