conftest.py 17.4 KB
Newer Older
jixx's avatar
init  
jixx committed
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
import asyncio
import contextlib
import json
import math
import os
import random
import re
import shutil
import subprocess
import sys
import tempfile
import time
from typing import Dict, List, Optional

import docker
import pytest
from aiohttp import ClientConnectorError, ClientOSError, ServerDisconnectedError
from docker.errors import NotFound
from syrupy.extensions.json import JSONSnapshotExtension
from text_generation import AsyncClient
from text_generation.types import (
    BestOfSequence,
    ChatComplete,
    ChatCompletionChunk,
    ChatCompletionComplete,
    Completion,
    Details,
    Grammar,
    InputToken,
    Response,
    Token,
)

DOCKER_IMAGE = os.getenv("DOCKER_IMAGE", None)
HF_TOKEN = os.getenv("HF_TOKEN", None)
DOCKER_VOLUME = os.getenv("DOCKER_VOLUME", "/data")
DOCKER_DEVICES = os.getenv("DOCKER_DEVICES")


def pytest_addoption(parser):
    parser.addoption(
        "--release", action="store_true", default=False, help="run release tests"
    )


def pytest_configure(config):
    config.addinivalue_line("markers", "release: mark test as a release-only test")


def pytest_collection_modifyitems(config, items):
    if config.getoption("--release"):
        # --release given in cli: do not skip release tests
        return
    skip_release = pytest.mark.skip(reason="need --release option to run")
    for item in items:
        if "release" in item.keywords:
            item.add_marker(skip_release)


class ResponseComparator(JSONSnapshotExtension):
    rtol = 0.2
    ignore_logprob = False

    def serialize(
        self,
        data,
        *,
        exclude=None,
        matcher=None,
    ):
        if (
            isinstance(data, Response)
            or isinstance(data, ChatComplete)
            or isinstance(data, ChatCompletionChunk)
            or isinstance(data, ChatCompletionComplete)
        ):
            data = data.model_dump()

        if isinstance(data, List):
            data = [d.model_dump() for d in data]

        data = self._filter(
            data=data, depth=0, path=(), exclude=exclude, matcher=matcher
        )
        return json.dumps(data, indent=2, ensure_ascii=False, sort_keys=False) + "\n"

    def matches(
        self,
        *,
        serialized_data,
        snapshot_data,
    ) -> bool:
        def convert_data(data):
            data = json.loads(data)
            if isinstance(data, Dict) and "choices" in data:
                choices = data["choices"]
                if isinstance(choices, List) and len(choices) >= 1:
                    if "delta" in choices[0]:
                        return ChatCompletionChunk(**data)
                    if "text" in choices[0]:
                        return Completion(**data)
                return ChatComplete(**data)

            if isinstance(data, Dict):
                return Response(**data)
            if isinstance(data, List):
                if (
                    len(data) > 0
                    and "object" in data[0]
                    and data[0]["object"] == "text_completion"
                ):
                    return [Completion(**d) for d in data]
                return [Response(**d) for d in data]
            raise NotImplementedError

        def eq_token(token: Token, other: Token) -> bool:
            return (
                token.id == other.id
                and token.text == other.text
                and (
                    self.ignore_logprob
                    or math.isclose(token.logprob, other.logprob, rel_tol=self.rtol)
                )
                and token.special == other.special
            )

        def eq_prefill_token(prefill_token: InputToken, other: InputToken) -> bool:
            try:
                return (
                    prefill_token.id == other.id
                    and prefill_token.text == other.text
                    and (
                        self.ignore_logprob
                        or math.isclose(
                            prefill_token.logprob,
                            other.logprob,
                            rel_tol=self.rtol,
                        )
                        if prefill_token.logprob is not None
                        else prefill_token.logprob == other.logprob
                    )
                )
            except TypeError:
                return False

        def eq_best_of(details: BestOfSequence, other: BestOfSequence) -> bool:
            return (
                details.finish_reason == other.finish_reason
                and details.generated_tokens == other.generated_tokens
                and details.seed == other.seed
                and len(details.prefill) == len(other.prefill)
                and all(
                    [
                        eq_prefill_token(d, o)
                        for d, o in zip(details.prefill, other.prefill)
                    ]
                )
                and len(details.tokens) == len(other.tokens)
                and all([eq_token(d, o) for d, o in zip(details.tokens, other.tokens)])
            )

        def eq_details(details: Details, other: Details) -> bool:
            return (
                details.finish_reason == other.finish_reason
                and details.generated_tokens == other.generated_tokens
                and details.seed == other.seed
                and len(details.prefill) == len(other.prefill)
                and all(
                    [
                        eq_prefill_token(d, o)
                        for d, o in zip(details.prefill, other.prefill)
                    ]
                )
                and len(details.tokens) == len(other.tokens)
                and all([eq_token(d, o) for d, o in zip(details.tokens, other.tokens)])
                and (
                    len(details.best_of_sequences)
                    if details.best_of_sequences is not None
                    else 0
                )
                == (
                    len(other.best_of_sequences)
                    if other.best_of_sequences is not None
                    else 0
                )
                and (
                    all(
                        [
                            eq_best_of(d, o)
                            for d, o in zip(
                                details.best_of_sequences, other.best_of_sequences
                            )
                        ]
                    )
                    if details.best_of_sequences is not None
                    else details.best_of_sequences == other.best_of_sequences
                )
            )

        def eq_completion(response: Completion, other: Completion) -> bool:
            return response.choices[0].text == other.choices[0].text

        def eq_chat_complete(response: ChatComplete, other: ChatComplete) -> bool:
            return (
                response.choices[0].message.content == other.choices[0].message.content
            )

        def eq_chat_complete_chunk(
            response: ChatCompletionChunk, other: ChatCompletionChunk
        ) -> bool:
            return response.choices[0].delta.content == other.choices[0].delta.content

        def eq_response(response: Response, other: Response) -> bool:
            return response.generated_text == other.generated_text and eq_details(
                response.details, other.details
            )

        serialized_data = convert_data(serialized_data)
        snapshot_data = convert_data(snapshot_data)

        if not isinstance(serialized_data, List):
            serialized_data = [serialized_data]
        if not isinstance(snapshot_data, List):
            snapshot_data = [snapshot_data]

        if isinstance(serialized_data[0], Completion):
            return len(snapshot_data) == len(serialized_data) and all(
                [eq_completion(r, o) for r, o in zip(serialized_data, snapshot_data)]
            )

        if isinstance(serialized_data[0], ChatComplete):
            return len(snapshot_data) == len(serialized_data) and all(
                [eq_chat_complete(r, o) for r, o in zip(serialized_data, snapshot_data)]
            )

        if isinstance(serialized_data[0], ChatCompletionChunk):
            return len(snapshot_data) == len(serialized_data) and all(
                [
                    eq_chat_complete_chunk(r, o)
                    for r, o in zip(serialized_data, snapshot_data)
                ]
            )

        return len(snapshot_data) == len(serialized_data) and all(
            [eq_response(r, o) for r, o in zip(serialized_data, snapshot_data)]
        )


class GenerousResponseComparator(ResponseComparator):
    # Needed for GPTQ with exllama which has serious numerical fluctuations.
    rtol = 0.75


class IgnoreLogProbResponseComparator(ResponseComparator):
    ignore_logprob = True


class LauncherHandle:
    def __init__(self, port: int):
        self.client = AsyncClient(f"http://localhost:{port}")

    def _inner_health(self):
        raise NotImplementedError

    async def health(self, timeout: int = 60):
        assert timeout > 0
        for _ in range(timeout):
            if not self._inner_health():
                raise RuntimeError("Launcher crashed")

            try:
                await self.client.generate("test")
                return
            except (ClientConnectorError, ClientOSError, ServerDisconnectedError) as e:
                time.sleep(1)
        raise RuntimeError("Health check failed")


class ContainerLauncherHandle(LauncherHandle):
    def __init__(self, docker_client, container_name, port: int):
        super(ContainerLauncherHandle, self).__init__(port)
        self.docker_client = docker_client
        self.container_name = container_name

    def _inner_health(self) -> bool:
        container = self.docker_client.containers.get(self.container_name)
        return container.status in ["running", "created"]


class ProcessLauncherHandle(LauncherHandle):
    def __init__(self, process, port: int):
        super(ProcessLauncherHandle, self).__init__(port)
        self.process = process

    def _inner_health(self) -> bool:
        return self.process.poll() is None


@pytest.fixture
def response_snapshot(snapshot):
    return snapshot.use_extension(ResponseComparator)


@pytest.fixture
def generous_response_snapshot(snapshot):
    return snapshot.use_extension(GenerousResponseComparator)


@pytest.fixture
def ignore_logprob_response_snapshot(snapshot):
    return snapshot.use_extension(IgnoreLogProbResponseComparator)


@pytest.fixture(scope="module")
def event_loop():
    loop = asyncio.get_event_loop()
    yield loop
    loop.close()


@pytest.fixture(scope="module")
def launcher(event_loop):
    @contextlib.contextmanager
    def local_launcher(
        model_id: str,
        num_shard: Optional[int] = None,
        quantize: Optional[str] = None,
        trust_remote_code: bool = False,
        use_flash_attention: bool = True,
        disable_grammar_support: bool = False,
        dtype: Optional[str] = None,
        revision: Optional[str] = None,
        max_input_length: Optional[int] = None,
        max_batch_prefill_tokens: Optional[int] = None,
        max_total_tokens: Optional[int] = None,
    ):
        port = random.randint(8000, 10_000)
        master_port = random.randint(10_000, 20_000)

        shard_uds_path = (
            f"/tmp/tgi-tests-{model_id.split('/')[-1]}-{num_shard}-{quantize}-server"
        )

        args = [
            "text-generation-launcher",
            "--model-id",
            model_id,
            "--port",
            str(port),
            "--master-port",
            str(master_port),
            "--shard-uds-path",
            shard_uds_path,
        ]

        env = os.environ

        if disable_grammar_support:
            args.append("--disable-grammar-support")
        if num_shard is not None:
            args.extend(["--num-shard", str(num_shard)])
        if quantize is not None:
            args.append("--quantize")
            args.append(quantize)
        if dtype is not None:
            args.append("--dtype")
            args.append(dtype)
        if revision is not None:
            args.append("--revision")
            args.append(revision)
        if trust_remote_code:
            args.append("--trust-remote-code")
        if max_input_length:
            args.append("--max-input-length")
            args.append(str(max_input_length))
        if max_batch_prefill_tokens:
            args.append("--max-batch-prefill-tokens")
            args.append(str(max_batch_prefill_tokens))
        if max_total_tokens:
            args.append("--max-total-tokens")
            args.append(str(max_total_tokens))

        env["LOG_LEVEL"] = "info,text_generation_router=debug"

        if not use_flash_attention:
            env["USE_FLASH_ATTENTION"] = "false"

        with tempfile.TemporaryFile("w+") as tmp:
            # We'll output stdout/stderr to a temporary file. Using a pipe
            # cause the process to block until stdout is read.
            with subprocess.Popen(
                args,
                stdout=tmp,
                stderr=subprocess.STDOUT,
                env=env,
            ) as process:
                yield ProcessLauncherHandle(process, port)

                process.terminate()
                process.wait(60)

                tmp.seek(0)
                shutil.copyfileobj(tmp, sys.stderr)

        if not use_flash_attention:
            del env["USE_FLASH_ATTENTION"]

    @contextlib.contextmanager
    def docker_launcher(
        model_id: str,
        num_shard: Optional[int] = None,
        quantize: Optional[str] = None,
        trust_remote_code: bool = False,
        use_flash_attention: bool = True,
        disable_grammar_support: bool = False,
        dtype: Optional[str] = None,
        revision: Optional[str] = None,
        max_input_length: Optional[int] = None,
        max_batch_prefill_tokens: Optional[int] = None,
        max_total_tokens: Optional[int] = None,
    ):
        port = random.randint(8000, 10_000)

        args = ["--model-id", model_id, "--env"]

        if disable_grammar_support:
            args.append("--disable-grammar-support")
        if num_shard is not None:
            args.extend(["--num-shard", str(num_shard)])
        if quantize is not None:
            args.append("--quantize")
            args.append(quantize)
        if dtype is not None:
            args.append("--dtype")
            args.append(dtype)
        if revision is not None:
            args.append("--revision")
            args.append(revision)
        if trust_remote_code:
            args.append("--trust-remote-code")
        if max_input_length:
            args.append("--max-input-length")
            args.append(str(max_input_length))
        if max_batch_prefill_tokens:
            args.append("--max-batch-prefill-tokens")
            args.append(str(max_batch_prefill_tokens))
        if max_total_tokens:
            args.append("--max-total-tokens")
            args.append(str(max_total_tokens))

        client = docker.from_env()

        container_name = f"tgi-tests-{model_id.split('/')[-1]}-{num_shard}-{quantize}"

        try:
            container = client.containers.get(container_name)
            container.stop()
            container.wait()
        except NotFound:
            pass

        gpu_count = num_shard if num_shard is not None else 1

        env = {
            "LOG_LEVEL": "info,text_generation_router=debug",
        }
        if not use_flash_attention:
            env["USE_FLASH_ATTENTION"] = "false"

        if HF_TOKEN is not None:
            env["HF_TOKEN"] = HF_TOKEN

        volumes = []
        if DOCKER_VOLUME:
            volumes = [f"{DOCKER_VOLUME}:/data"]

        if DOCKER_DEVICES:
            devices = DOCKER_DEVICES.split(",")
            visible = os.getenv("ROCR_VISIBLE_DEVICES")
            if visible:
                env["ROCR_VISIBLE_DEVICES"] = visible
            device_requests = []
        else:
            devices = []
            device_requests = [
                docker.types.DeviceRequest(count=gpu_count, capabilities=[["gpu"]])
            ]

        container = client.containers.run(
            DOCKER_IMAGE,
            command=args,
            name=container_name,
            environment=env,
            auto_remove=False,
            detach=True,
            device_requests=device_requests,
            devices=devices,
            volumes=volumes,
            ports={"80/tcp": port},
            shm_size="1G",
        )

        yield ContainerLauncherHandle(client, container.name, port)

        if not use_flash_attention:
            del env["USE_FLASH_ATTENTION"]

        try:
            container.stop()
            container.wait()
        except NotFound:
            pass

        container_output = container.logs().decode("utf-8")
        print(container_output, file=sys.stderr)

        container.remove()

    if DOCKER_IMAGE is not None:
        return docker_launcher
    return local_launcher


@pytest.fixture(scope="module")
def generate_load():
    async def generate_load_inner(
        client: AsyncClient,
        prompt: str,
        max_new_tokens: int,
        n: int,
        seed: Optional[int] = None,
        grammar: Optional[Grammar] = None,
        stop_sequences: Optional[List[str]] = None,
    ) -> List[Response]:
        futures = [
            client.generate(
                prompt,
                max_new_tokens=max_new_tokens,
                decoder_input_details=True,
                seed=seed,
                grammar=grammar,
                stop_sequences=stop_sequences,
            )
            for _ in range(n)
        ]

        return await asyncio.gather(*futures)

    return generate_load_inner