gpu.go 19.2 KB
Newer Older
wangkx1's avatar
wangkx1 committed
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
//go:build linux || windows

package gpu

/*
#cgo linux LDFLAGS: -lrt -lpthread -ldl -lstdc++ -lm
#cgo windows LDFLAGS: -lpthread

#include "gpu_info.h"
*/
import "C"

import (
	"fmt"
	"log/slog"
	"os"
	"path/filepath"
	"runtime"
	"strings"
	"sync"
	"unsafe"

	"github.com/ollama/ollama/envconfig"
	"github.com/ollama/ollama/format"
)

type cudaHandles struct {
	deviceCount int
	cudart      *C.cudart_handle_t
	nvcuda      *C.nvcuda_handle_t
	nvml        *C.nvml_handle_t
}

type oneapiHandles struct {
	oneapi      *C.oneapi_handle_t
	deviceCount int
}

const (
	cudaMinimumMemory = 457 * format.MebiByte
	rocmMinimumMemory = 457 * format.MebiByte
	// TODO OneAPI minimum memory
)

var (
	gpuMutex      sync.Mutex
	bootstrapped  bool
	cpuCapability CPUCapability
	cpus          []CPUInfo
	cudaGPUs      []CudaGPUInfo
	nvcudaLibPath string
	cudartLibPath string
	oneapiLibPath string
	nvmlLibPath   string
	rocmGPUs      []RocmGPUInfo
	oneapiGPUs    []OneapiGPUInfo
)

// With our current CUDA compile flags, older than 5.0 will not work properly
var CudaComputeMin = [2]C.int{5, 0}

var RocmComputeMin = 9

// TODO find a better way to detect iGPU instead of minimum memory
const IGPUMemLimit = 1 * format.GibiByte // 512G is what they typically report, so anything less than 1G must be iGPU

// Jetson devices have JETSON_JETPACK="x.y.z" factory set to the Jetpack version installed.
// Included to drive logic for reducing Ollama-allocated overhead on L4T/Jetson devices.
var CudaTegra string = os.Getenv("JETSON_JETPACK")

// Note: gpuMutex must already be held
func initCudaHandles() *cudaHandles {
	// TODO - if the ollama build is CPU only, don't do these checks as they're irrelevant and confusing

	cHandles := &cudaHandles{}
	// Short Circuit if we already know which library to use
	if nvmlLibPath != "" {
		cHandles.nvml, _ = LoadNVMLMgmt([]string{nvmlLibPath})
		return cHandles
	}
	if nvcudaLibPath != "" {
		cHandles.deviceCount, cHandles.nvcuda, _ = LoadNVCUDAMgmt([]string{nvcudaLibPath})
		return cHandles
	}
	if cudartLibPath != "" {
		cHandles.deviceCount, cHandles.cudart, _ = LoadCUDARTMgmt([]string{cudartLibPath})
		return cHandles
	}

	slog.Debug("searching for GPU discovery libraries for NVIDIA")
	var cudartMgmtPatterns []string

	// Aligned with driver, we can't carry as payloads
	nvcudaMgmtPatterns := NvcudaGlobs

	if runtime.GOOS == "windows" {
		localAppData := os.Getenv("LOCALAPPDATA")
		cudartMgmtPatterns = []string{filepath.Join(localAppData, "Programs", "Ollama", CudartMgmtName)}
	}
	tmpDir, _ := PayloadsDir()
	if tmpDir != "" {
		// TODO - add "payloads" for subprocess
		cudartMgmtPatterns = []string{filepath.Join(tmpDir, "cuda*", CudartMgmtName)}
	}
	cudartMgmtPatterns = append(cudartMgmtPatterns, CudartGlobs...)

	if len(NvmlGlobs) > 0 {
		nvmlLibPaths := FindGPULibs(NvmlMgmtName, NvmlGlobs)
		if len(nvmlLibPaths) > 0 {
			nvml, libPath := LoadNVMLMgmt(nvmlLibPaths)
			if nvml != nil {
				slog.Debug("nvidia-ml loaded", "library", libPath)
				cHandles.nvml = nvml
				nvmlLibPath = libPath
			}
		}
	}

	nvcudaLibPaths := FindGPULibs(NvcudaMgmtName, nvcudaMgmtPatterns)
	if len(nvcudaLibPaths) > 0 {
		deviceCount, nvcuda, libPath := LoadNVCUDAMgmt(nvcudaLibPaths)
		if nvcuda != nil {
			slog.Debug("detected GPUs", "count", deviceCount, "library", libPath)
			cHandles.nvcuda = nvcuda
			cHandles.deviceCount = deviceCount
			nvcudaLibPath = libPath
			return cHandles
		}
	}

	cudartLibPaths := FindGPULibs(CudartMgmtName, cudartMgmtPatterns)
	if len(cudartLibPaths) > 0 {
		deviceCount, cudart, libPath := LoadCUDARTMgmt(cudartLibPaths)
		if cudart != nil {
			slog.Debug("detected GPUs", "library", libPath, "count", deviceCount)
			cHandles.cudart = cudart
			cHandles.deviceCount = deviceCount
			cudartLibPath = libPath
			return cHandles
		}
	}

	return cHandles
}

// Note: gpuMutex must already be held
func initOneAPIHandles() *oneapiHandles {
	oHandles := &oneapiHandles{}

	// Short Circuit if we already know which library to use
	if oneapiLibPath != "" {
		oHandles.deviceCount, oHandles.oneapi, _ = LoadOneapiMgmt([]string{oneapiLibPath})
		return oHandles
	}

	oneapiLibPaths := FindGPULibs(OneapiMgmtName, OneapiGlobs)
	if len(oneapiLibPaths) > 0 {
		oHandles.deviceCount, oHandles.oneapi, oneapiLibPath = LoadOneapiMgmt(oneapiLibPaths)
	}

	return oHandles
}

func GetCPUInfo() GpuInfoList {
	gpuMutex.Lock()
	if !bootstrapped {
		gpuMutex.Unlock()
		GetGPUInfo()
	} else {
		gpuMutex.Unlock()
	}
	return GpuInfoList{cpus[0].GpuInfo}
}

func GetGPUInfo() GpuInfoList {
	// TODO - consider exploring lspci (and equivalent on windows) to check for
	// GPUs so we can report warnings if we see Nvidia/AMD but fail to load the libraries
	gpuMutex.Lock()
	defer gpuMutex.Unlock()
	needRefresh := true
	var cHandles *cudaHandles
	var oHandles *oneapiHandles
	defer func() {
		if cHandles != nil {
			if cHandles.cudart != nil {
				C.cudart_release(*cHandles.cudart)
			}
			if cHandles.nvcuda != nil {
				C.nvcuda_release(*cHandles.nvcuda)
			}
			if cHandles.nvml != nil {
				C.nvml_release(*cHandles.nvml)
			}
		}
		if oHandles != nil {
			if oHandles.oneapi != nil {
				// TODO - is this needed?
				C.oneapi_release(*oHandles.oneapi)
			}
		}
	}()

	if !bootstrapped {
		slog.Info("looking for compatible GPUs")
		needRefresh = false
		cpuCapability = GetCPUCapability()
		var memInfo C.mem_info_t

		mem, err := GetCPUMem()
		if err != nil {
			slog.Warn("error looking up system memory", "error", err)
		}
		cpus = []CPUInfo{
			{
				GpuInfo: GpuInfo{
					memInfo: mem,
					Library: "cpu",
					Variant: cpuCapability,
					ID:      "0",
				},
			},
		}

		// Fallback to CPU mode if we're lacking required vector extensions on x86
		if cpuCapability < GPURunnerCPUCapability && runtime.GOARCH == "amd64" {
			slog.Warn("CPU does not have minimum vector extensions, GPU inference disabled", "required", GPURunnerCPUCapability, "detected", cpuCapability)
			bootstrapped = true
			// No need to do any GPU discovery, since we can't run on them
			return GpuInfoList{cpus[0].GpuInfo}
		}

		// On windows we bundle the nvidia library one level above the runner dir
		depPath := ""
		if runtime.GOOS == "windows" && envconfig.RunnersDir() != "" {
			depPath = filepath.Join(filepath.Dir(envconfig.RunnersDir()), "cuda")
		}

		// Load ALL libraries
		cHandles = initCudaHandles()

		// NVIDIA
		for i := range cHandles.deviceCount {
			if cHandles.cudart != nil || cHandles.nvcuda != nil {
				gpuInfo := CudaGPUInfo{
					GpuInfo: GpuInfo{
						Library: "cuda",
					},
					index: i,
				}
				var driverMajor int
				var driverMinor int
				if cHandles.cudart != nil {
					C.cudart_bootstrap(*cHandles.cudart, C.int(i), &memInfo)
				} else {
					C.nvcuda_bootstrap(*cHandles.nvcuda, C.int(i), &memInfo)
					driverMajor = int(cHandles.nvcuda.driver_major)
					driverMinor = int(cHandles.nvcuda.driver_minor)
				}
				if memInfo.err != nil {
					slog.Info("error looking up nvidia GPU memory", "error", C.GoString(memInfo.err))
					C.free(unsafe.Pointer(memInfo.err))
					continue
				}
				if memInfo.major < CudaComputeMin[0] || (memInfo.major == CudaComputeMin[0] && memInfo.minor < CudaComputeMin[1]) {
					slog.Info(fmt.Sprintf("[%d] CUDA GPU is too old. Compute Capability detected: %d.%d", i, memInfo.major, memInfo.minor))
					continue
				}
				gpuInfo.TotalMemory = uint64(memInfo.total)
				gpuInfo.FreeMemory = uint64(memInfo.free)
				gpuInfo.ID = C.GoString(&memInfo.gpu_id[0])
				gpuInfo.Compute = fmt.Sprintf("%d.%d", memInfo.major, memInfo.minor)
				gpuInfo.MinimumMemory = cudaMinimumMemory
				gpuInfo.DependencyPath = depPath
				gpuInfo.Name = C.GoString(&memInfo.gpu_name[0])
				gpuInfo.DriverMajor = driverMajor
				gpuInfo.DriverMinor = driverMinor

				// query the management library as well so we can record any skew between the two
				// which represents overhead on the GPU we must set aside on subsequent updates
				if cHandles.nvml != nil {
					C.nvml_get_free(*cHandles.nvml, C.int(gpuInfo.index), &memInfo.free, &memInfo.total, &memInfo.used)
					if memInfo.err != nil {
						slog.Warn("error looking up nvidia GPU memory", "error", C.GoString(memInfo.err))
						C.free(unsafe.Pointer(memInfo.err))
					} else {
						if memInfo.free != 0 && uint64(memInfo.free) > gpuInfo.FreeMemory {
							gpuInfo.OSOverhead = uint64(memInfo.free) - gpuInfo.FreeMemory
							slog.Info("detected OS VRAM overhead",
								"id", gpuInfo.ID,
								"library", gpuInfo.Library,
								"compute", gpuInfo.Compute,
								"driver", fmt.Sprintf("%d.%d", gpuInfo.DriverMajor, gpuInfo.DriverMinor),
								"name", gpuInfo.Name,
								"overhead", format.HumanBytes2(gpuInfo.OSOverhead),
							)
						}
					}
				}

				// TODO potentially sort on our own algorithm instead of what the underlying GPU library does...
				cudaGPUs = append(cudaGPUs, gpuInfo)
			}
		}

		// Intel
		if envconfig.IntelGPU() {
			oHandles = initOneAPIHandles()
			if oHandles != nil && oHandles.oneapi != nil {

				// On windows we bundle the oneapi library one level above the runner dir
				depPath = ""
				if runtime.GOOS == "windows" && envconfig.RunnersDir() != "" {
					depPath = filepath.Join(filepath.Dir(envconfig.RunnersDir()), "oneapi")
				}

				for d := range oHandles.oneapi.num_drivers {
					if oHandles.oneapi == nil {
						// shouldn't happen
						slog.Warn("nil oneapi handle with driver count", "count", int(oHandles.oneapi.num_drivers))
						continue
					}
					devCount := C.oneapi_get_device_count(*oHandles.oneapi, C.int(d))
					for i := range devCount {
						gpuInfo := OneapiGPUInfo{
							GpuInfo: GpuInfo{
								Library: "oneapi",
							},
							driverIndex: int(d),
							gpuIndex:    int(i),
						}
						// TODO - split bootstrapping from updating free memory
						C.oneapi_check_vram(*oHandles.oneapi, C.int(d), i, &memInfo)
						// TODO - convert this to MinimumMemory based on testing...
						var totalFreeMem float64 = float64(memInfo.free) * 0.95 // work-around: leave some reserve vram for mkl lib used in ggml-sycl backend.
						memInfo.free = C.uint64_t(totalFreeMem)
						gpuInfo.TotalMemory = uint64(memInfo.total)
						gpuInfo.FreeMemory = uint64(memInfo.free)
						gpuInfo.ID = C.GoString(&memInfo.gpu_id[0])
						gpuInfo.Name = C.GoString(&memInfo.gpu_name[0])
						gpuInfo.DependencyPath = depPath
						oneapiGPUs = append(oneapiGPUs, gpuInfo)
					}
				}
			}
		}

		rocmGPUs = AMDGetGPUInfo()
		bootstrapped = true
		if len(cudaGPUs) == 0 && len(rocmGPUs) == 0 && len(oneapiGPUs) == 0 {
			slog.Info("no compatible GPUs were discovered")
		}
	}

	// For detected GPUs, load library if not loaded

	// Refresh free memory usage
	if needRefresh {
		mem, err := GetCPUMem()
		if err != nil {
			slog.Warn("error looking up system memory", "error", err)
		} else {
			slog.Debug("updating system memory data",
				slog.Group(
					"before",
					"total", format.HumanBytes2(cpus[0].TotalMemory),
					"free", format.HumanBytes2(cpus[0].FreeMemory),
					"free_swap", format.HumanBytes2(cpus[0].FreeSwap),
				),
				slog.Group(
					"now",
					"total", format.HumanBytes2(mem.TotalMemory),
					"free", format.HumanBytes2(mem.FreeMemory),
					"free_swap", format.HumanBytes2(mem.FreeSwap),
				),
			)
			cpus[0].FreeMemory = mem.FreeMemory
			cpus[0].FreeSwap = mem.FreeSwap
		}

		var memInfo C.mem_info_t
		if cHandles == nil && len(cudaGPUs) > 0 {
			cHandles = initCudaHandles()
		}
		for i, gpu := range cudaGPUs {
			if cHandles.nvml != nil {
				C.nvml_get_free(*cHandles.nvml, C.int(gpu.index), &memInfo.free, &memInfo.total, &memInfo.used)
			} else if cHandles.cudart != nil {
				C.cudart_bootstrap(*cHandles.cudart, C.int(gpu.index), &memInfo)
			} else if cHandles.nvcuda != nil {
				C.nvcuda_get_free(*cHandles.nvcuda, C.int(gpu.index), &memInfo.free, &memInfo.total)
				memInfo.used = memInfo.total - memInfo.free
			} else {
				// shouldn't happen
				slog.Warn("no valid cuda library loaded to refresh vram usage")
				break
			}
			if memInfo.err != nil {
				slog.Warn("error looking up nvidia GPU memory", "error", C.GoString(memInfo.err))
				C.free(unsafe.Pointer(memInfo.err))
				continue
			}
			if memInfo.free == 0 {
				slog.Warn("error looking up nvidia GPU memory")
				continue
			}
			if cHandles.nvml != nil && gpu.OSOverhead > 0 {
				// When using the management library update based on recorded overhead
				memInfo.free -= C.uint64_t(gpu.OSOverhead)
			}
			slog.Debug("updating cuda memory data",
				"gpu", gpu.ID,
				"name", gpu.Name,
				"overhead", format.HumanBytes2(gpu.OSOverhead),
				slog.Group(
					"before",
					"total", format.HumanBytes2(gpu.TotalMemory),
					"free", format.HumanBytes2(gpu.FreeMemory),
				),
				slog.Group(
					"now",
					"total", format.HumanBytes2(uint64(memInfo.total)),
					"free", format.HumanBytes2(uint64(memInfo.free)),
					"used", format.HumanBytes2(uint64(memInfo.used)),
				),
			)
			cudaGPUs[i].FreeMemory = uint64(memInfo.free)
		}

		if oHandles == nil && len(oneapiGPUs) > 0 {
			oHandles = initOneAPIHandles()
		}
		for i, gpu := range oneapiGPUs {
			if oHandles.oneapi == nil {
				// shouldn't happen
				slog.Warn("nil oneapi handle with device count", "count", oHandles.deviceCount)
				continue
			}
			C.oneapi_check_vram(*oHandles.oneapi, C.int(gpu.driverIndex), C.int(gpu.gpuIndex), &memInfo)
			// TODO - convert this to MinimumMemory based on testing...
			var totalFreeMem float64 = float64(memInfo.free) * 0.95 // work-around: leave some reserve vram for mkl lib used in ggml-sycl backend.
			memInfo.free = C.uint64_t(totalFreeMem)
			oneapiGPUs[i].FreeMemory = uint64(memInfo.free)
		}

		err = RocmGPUInfoList(rocmGPUs).RefreshFreeMemory()
		if err != nil {
			slog.Debug("problem refreshing ROCm free memory", "error", err)
		}
	}

	resp := []GpuInfo{}
	for _, gpu := range cudaGPUs {
		resp = append(resp, gpu.GpuInfo)
	}
	for _, gpu := range rocmGPUs {
		resp = append(resp, gpu.GpuInfo)
	}
	for _, gpu := range oneapiGPUs {
		resp = append(resp, gpu.GpuInfo)
	}
	if len(resp) == 0 {
		resp = append(resp, cpus[0].GpuInfo)
	}
	return resp
}

func FindGPULibs(baseLibName string, defaultPatterns []string) []string {
	// Multiple GPU libraries may exist, and some may not work, so keep trying until we exhaust them
	var ldPaths []string
	var patterns []string
	gpuLibPaths := []string{}
	slog.Debug("Searching for GPU library", "name", baseLibName)

	switch runtime.GOOS {
	case "windows":
		ldPaths = strings.Split(os.Getenv("PATH"), ";")
	case "linux":
		ldPaths = strings.Split(os.Getenv("LD_LIBRARY_PATH"), ":")
	default:
		return gpuLibPaths
	}
	// Start with whatever we find in the PATH/LD_LIBRARY_PATH
	for _, ldPath := range ldPaths {
		d, err := filepath.Abs(ldPath)
		if err != nil {
			continue
		}
		patterns = append(patterns, filepath.Join(d, baseLibName+"*"))
	}
	patterns = append(patterns, defaultPatterns...)
	slog.Debug("gpu library search", "globs", patterns)
	for _, pattern := range patterns {

		// Nvidia PhysX known to return bogus results
		if strings.Contains(pattern, "PhysX") {
			slog.Debug("skipping PhysX cuda library path", "path", pattern)
			continue
		}
		// Ignore glob discovery errors
		matches, _ := filepath.Glob(pattern)
		for _, match := range matches {
			// Resolve any links so we don't try the same lib multiple times
			// and weed out any dups across globs
			libPath := match
			tmp := match
			var err error
			for ; err == nil; tmp, err = os.Readlink(libPath) {
				if !filepath.IsAbs(tmp) {
					tmp = filepath.Join(filepath.Dir(libPath), tmp)
				}
				libPath = tmp
			}
			new := true
			for _, cmp := range gpuLibPaths {
				if cmp == libPath {
					new = false
					break
				}
			}
			if new {
				gpuLibPaths = append(gpuLibPaths, libPath)
			}
		}
	}
	slog.Debug("discovered GPU libraries", "paths", gpuLibPaths)
	return gpuLibPaths
}

func LoadCUDARTMgmt(cudartLibPaths []string) (int, *C.cudart_handle_t, string) {
	var resp C.cudart_init_resp_t
	resp.ch.verbose = getVerboseState()
	for _, libPath := range cudartLibPaths {
		lib := C.CString(libPath)
		defer C.free(unsafe.Pointer(lib))
		C.cudart_init(lib, &resp)
		if resp.err != nil {
			slog.Debug("Unable to load cudart", "library", libPath, "error", C.GoString(resp.err))
			C.free(unsafe.Pointer(resp.err))
		} else {
			return int(resp.num_devices), &resp.ch, libPath
		}
	}
	return 0, nil, ""
}

func LoadNVCUDAMgmt(nvcudaLibPaths []string) (int, *C.nvcuda_handle_t, string) {
	var resp C.nvcuda_init_resp_t
	resp.ch.verbose = getVerboseState()
	for _, libPath := range nvcudaLibPaths {
		lib := C.CString(libPath)
		defer C.free(unsafe.Pointer(lib))
		C.nvcuda_init(lib, &resp)
		if resp.err != nil {
			// Decide what log level based on the type of error message to help users understand why
			msg := C.GoString(resp.err)
			switch resp.cudaErr {
			case C.CUDA_ERROR_INSUFFICIENT_DRIVER, C.CUDA_ERROR_SYSTEM_DRIVER_MISMATCH:
				slog.Warn("version mismatch between driver and cuda driver library - reboot or upgrade may be required", "library", libPath, "error", msg)
			case C.CUDA_ERROR_NO_DEVICE:
				slog.Info("no nvidia devices detected", "library", libPath)
			case C.CUDA_ERROR_UNKNOWN:
				slog.Warn("unknown error initializing cuda driver library", "library", libPath, "error", msg)
				slog.Warn("see https://github.com/ollama/ollama/blob/main/docs/troubleshooting.md for more information")
			default:
				if strings.Contains(msg, "wrong ELF class") {
					slog.Debug("skipping 32bit library", "library", libPath)
				} else {
					slog.Info("unable to load cuda driver library", "library", libPath, "error", msg)
				}
			}
			C.free(unsafe.Pointer(resp.err))
		} else {
			return int(resp.num_devices), &resp.ch, libPath
		}
	}
	return 0, nil, ""
}

func LoadNVMLMgmt(nvmlLibPaths []string) (*C.nvml_handle_t, string) {
	var resp C.nvml_init_resp_t
	resp.ch.verbose = getVerboseState()
	for _, libPath := range nvmlLibPaths {
		lib := C.CString(libPath)
		defer C.free(unsafe.Pointer(lib))
		C.nvml_init(lib, &resp)
		if resp.err != nil {
			slog.Info(fmt.Sprintf("Unable to load NVML management library %s: %s", libPath, C.GoString(resp.err)))
			C.free(unsafe.Pointer(resp.err))
		} else {
			return &resp.ch, libPath
		}
	}
	return nil, ""
}

func LoadOneapiMgmt(oneapiLibPaths []string) (int, *C.oneapi_handle_t, string) {
	var resp C.oneapi_init_resp_t
	num_devices := 0
	resp.oh.verbose = getVerboseState()
	for _, libPath := range oneapiLibPaths {
		lib := C.CString(libPath)
		defer C.free(unsafe.Pointer(lib))
		C.oneapi_init(lib, &resp)
		if resp.err != nil {
			slog.Debug("Unable to load oneAPI management library", "library", libPath, "error", C.GoString(resp.err))
			C.free(unsafe.Pointer(resp.err))
		} else {
			for i := range resp.oh.num_drivers {
				num_devices += int(C.oneapi_get_device_count(resp.oh, C.int(i)))
			}
			return num_devices, &resp.oh, libPath
		}
	}
	return 0, nil, ""
}

func getVerboseState() C.uint16_t {
	if envconfig.Debug() {
		return C.uint16_t(1)
	}
	return C.uint16_t(0)
}

// Given the list of GPUs this instantiation is targeted for,
// figure out the visible devices environment variable
//
// If different libraries are detected, the first one is what we use
func (l GpuInfoList) GetVisibleDevicesEnv() (string, string) {
	if len(l) == 0 {
		return "", ""
	}
	switch l[0].Library {
	case "cuda":
		return cudaGetVisibleDevicesEnv(l)
	case "rocm":
		return rocmGetVisibleDevicesEnv(l)
	case "oneapi":
		return oneapiGetVisibleDevicesEnv(l)
	default:
		slog.Debug("no filter required for library " + l[0].Library)
		return "", ""
	}
}