tensile_origin.py 4.05 KB
Newer Older
Sugon_ldc's avatar
Sugon_ldc committed
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
# This is a sample Python script.

# Press Shift+F10 to execute it or replace it with your code.
# Press Double Shift to search everywhere for classes, files, tool windows, actions, and settings.

import csv
import os
import pandas as pd
import numpy as np
import pandas as pd

class tensileOriginfile():

    def __init__(self, file):
        self.file = file
        self.TransA = []
        self.TransB = []
        self.M = []
        self.N = []
        self.B = []
        self.K = []
        self.ldd = []
        self.ldc = []
        self.lda = []
        self.ldb = []
        self.strideA = []
        self.strideB = []
        self.strideC = []
        self.strideD = []
        self.compute_type = []
        self.api_type = []


    def analyszie_file(self):
        with open(self.file, 'r') as txt:
            content = txt.readlines()
            txt.close()
        lines = np.array(content)
        num_of_instances = lines.size
        str_line = str()
        for i in range(0, num_of_instances):
            str_line = str(lines[i])
            str_list = str_line.split()
            print(str_list)
            if "--transposeA" in str_list:
                self.TransA.append(str_list[str_list.index("--transposeA")+1])
                self.TransB.append(str_list[str_list.index("--transposeB") + 1])
                self.api_type.append(str_list[str_list.index("-f") + 1])
                self.M.append(str_list[str_list.index("-m") + 1])
                self.N.append(str_list[str_list.index("-n") + 1])
                if "--batch_count" in str_list:
                    self.B.append(str_list[str_list.index("--batch_count") + 1])
                else:
                    self.B.append(str(1))
                self.K.append(str_list[str_list.index("-k") + 1])
                if "--ldd" in str_list:
                    self.ldd.append(str_list[str_list.index("--ldd") + 1])
                else:
                    self.ldd.append(str_list[str_list.index("--ldc") + 1])
                self.ldc.append(str_list[str_list.index("--ldc") + 1])
                self.lda.append(str_list[str_list.index("--lda") + 1])
                self.ldb.append(str_list[str_list.index("--ldb") + 1])
                if "--compute_type" in str_list:
                    self.compute_type.append(str_list[str_list.index("--compute_type") + 1])
                else:
                    self.compute_type.append("none")
                if "--stride_a" in str_list:
                    self.strideA.append(str_list[str_list.index("--stride_a") + 1])
                else:
                    self.strideA.append("1")
                if "--stride_b" in str_list:
                    self.strideB.append(str_list[str_list.index("--stride_b") + 1])
                else:
                    self.strideB.append("1")
                if "--stride_c" in str_list:
                    self.strideC.append(str_list[str_list.index("--stride_c") + 1])
                else:
                    self.strideC.append("1")
                if "--stride_d" in str_list:
                    self.strideD.append(str_list[str_list.index("--stride_d") + 1])
                else:
                    self.strideD.append("1")

    def create_csv(self):
        frame = pd.DataFrame({'TransA': self.TransA, 'TransB': self.TransB, 'api_type': self.api_type, 'M': self.M,
                              'N': self.N, 'B': self.B, 'K': self.K, 'ldd': self.ldd, 'ldc': self.ldc,
                              'lda': self.lda, 'ldb': self.ldb, 'compute_type': self.compute_type,
                              'strideA': self.strideA, 'strideB': self.strideB, 'strideC': self.strideC,
                              'strideD': self.strideD})

        frame.to_csv("rocblas_extract.csv", index=False, sep=',')


if __name__ == "__main__":
    ts = tensileOriginfile("rocblas.log")
    ts.analyszie_file()
    ts.create_csv()


    df = pd.read_csv('rocblas_extract.csv')
    df = df.drop_duplicates()
    df.to_csv('rocblas_extract_without_duplicates.csv', index=False)