Skip to content
GitLab
Menu
Projects
Groups
Snippets
Loading...
Help
Help
Support
Community forum
Keyboard shortcuts
?
Submit feedback
Contribute to GitLab
Sign in / Register
Toggle navigation
Menu
Open sidebar
sunzhq2
yidong-infer
Commits
00169466
Commit
00169466
authored
Jan 20, 2026
by
sunzhq2
Browse files
update yolo
parent
92c75df1
Changes
9
Hide whitespace changes
Inline
Side-by-side
Showing
9 changed files
with
37 additions
and
316 deletions
+37
-316
yolo/yolov5_cmcc/=4.1.2
yolo/yolov5_cmcc/=4.1.2
+0
-3
yolo/yolov5_cmcc/inf.sh
yolo/yolov5_cmcc/inf.sh
+0
-2
yolo/yolov5_cmcc/migraphx.sh
yolo/yolov5_cmcc/migraphx.sh
+0
-15
yolo/yolov5_cmcc/migraphx_eval.py.bak
yolo/yolov5_cmcc/migraphx_eval.py.bak
+0
-248
yolo/yolov5_cmcc/tools/ana.sh
yolo/yolov5_cmcc/tools/ana.sh
+0
-0
yolo/yolov5_cmcc/tools/migraphx_eval.py
yolo/yolov5_cmcc/tools/migraphx_eval.py
+16
-48
yolo/yolov5_cmcc/tools/onnx_inference.sh
yolo/yolov5_cmcc/tools/onnx_inference.sh
+21
-0
yolo/yolov5_cmcc/tools/onnx_to_mxr.py
yolo/yolov5_cmcc/tools/onnx_to_mxr.py
+0
-0
yolo/yolov5_cmcc/tools/post.sh
yolo/yolov5_cmcc/tools/post.sh
+0
-0
No files found.
yolo/yolov5_cmcc/=4.1.2
deleted
100644 → 0
View file @
92c75df1
Looking in indexes: https://pypi.doubanio.com/simple
Requirement already satisfied: opencv-python in /root/miniconda3/envs/py310/lib/python3.10/site-packages (4.12.0.88)
Requirement already satisfied: numpy<2.3.0,>=2 in /root/miniconda3/envs/py310/lib/python3.10/site-packages (from opencv-python) (2.2.6)
yolo/yolov5_cmcc/inf.sh
deleted
100644 → 0
View file @
92c75df1
export
HIP_PRINTF_DEBUG_FOR_FP64
=
0
nohup
python migraphx_eval.py
--img
640
--batch-size
24
--data
coco.yaml
--weight
./yolov5m.onnx
--device
7 2>&1 |
tee
result7.log &
yolo/yolov5_cmcc/migraphx.sh
deleted
100644 → 0
View file @
92c75df1
python migraphx_eval.py
--img
640
--batch-size
24
--data
coco.yaml
--weight
./yolov5m.onnx
--device
0
python migraphx_eval.py
--img
640
--batch-size
24
--data
coco.yaml
--weight
./yolov5m.onnx
--device
1
python migraphx_eval.py
--img
640
--batch-size
24
--data
coco.yaml
--weight
./yolov5m.onnx
--device
2
python migraphx_eval.py
--img
640
--batch-size
24
--data
coco.yaml
--weight
./yolov5m.onnx
--device
3
python migraphx_eval.py
--img
640
--batch-size
24
--data
coco.yaml
--weight
./yolov5m.onnx
--device
4
python migraphx_eval.py
--img
640
--batch-size
24
--data
coco.yaml
--weight
./yolov5m.onnx
--device
5
python migraphx_eval.py
--img
640
--batch-size
24
--data
coco.yaml
--weight
./yolov5m.onnx
--device
6
python migraphx_eval.py
--img
640
--batch-size
24
--data
coco.yaml
--weight
./yolov5m.onnx
--device
7
\ No newline at end of file
yolo/yolov5_cmcc/migraphx_eval.py.bak
deleted
100644 → 0
View file @
92c75df1
#
YOLOv5
🚀
by
Ultralytics
,
GPL
-
3.0
license
"""
Validate a trained YOLOv5 model accuracy on a custom dataset
Usage:
$ python path/to/val.py --data coco128.yaml --weights yolov5s.pt --img 640
"""
import
argparse
import
json
import
os
import
sys
from
pathlib
import
Path
from
threading
import
Thread
import
cv2
import
numpy
as
np
import
torch
from
torchvision
.
transforms
import
Resize
import
migraphx
from
tqdm
import
tqdm
import
glob
import
time
FILE
=
Path
(
__file__
).
resolve
()
ROOT
=
FILE
.
parents
[
0
]
#
YOLOv5
root
directory
if
str
(
ROOT
)
not
in
sys
.
path
:
sys
.
path
.
append
(
str
(
ROOT
))
#
add
ROOT
to
PATH
ROOT
=
Path
(
os
.
path
.
relpath
(
ROOT
,
Path
.
cwd
()))
#
relative
from
models
.
experimental
import
attempt_load
from
utils
.
datasets
import
create_dataloader
from
utils
.
general
import
coco80_to_coco91_class
,
check_dataset
,
check_img_size
,
check_requirements
,
\
check_suffix
,
check_yaml
,
box_iou
,
non_max_suppression
,
scale_coords
,
xyxy2xywh
,
xywh2xyxy
,
\
increment_path
,
colorstr
,
print_args
from
utils
.
metrics
import
ap_per_class
,
ConfusionMatrix
from
utils
.
plots
import
output_to_target
,
plot_images
,
plot_val_study
from
utils
.
torch_utils
import
select_device
,
time_sync
def
process_batch
(
detections
,
labels
,
iouv
):
"""
Return correct predictions matrix. Both sets of boxes are in (x1, y1, x2, y2) format.
Arguments:
detections (Array[N, 6]), x1, y1, x2, y2, conf, class
labels (Array[M, 5]), class, x1, y1, x2, y2
Returns:
correct (Array[N, 10]), for 10 IoU levels
"""
correct
=
torch
.
zeros
(
detections
.
shape
[
0
],
iouv
.
shape
[
0
],
dtype
=
torch
.
bool
,
device
=
iouv
.
device
)
iou
=
box_iou
(
labels
[:,
1
:],
detections
[:,
:
4
])
x
=
torch
.
where
((
iou
>=
iouv
[
0
])
&
(
labels
[:,
0
:
1
]
==
detections
[:,
5
]))
#
IoU
above
threshold
and
classes
match
if
x
[
0
].
shape
[
0
]:
matches
=
torch
.
cat
((
torch
.
stack
(
x
,
1
),
iou
[
x
[
0
],
x
[
1
]][:,
None
]),
1
).
cpu
().
numpy
()
#
[
label
,
detection
,
iou
]
if
x
[
0
].
shape
[
0
]
>
1
:
matches
=
matches
[
matches
[:,
2
].
argsort
()[::-
1
]]
matches
=
matches
[
np
.
unique
(
matches
[:,
1
],
return_index
=
True
)[
1
]]
#
matches
=
matches
[
matches
[:,
2
].
argsort
()[::-
1
]]
matches
=
matches
[
np
.
unique
(
matches
[:,
0
],
return_index
=
True
)[
1
]]
matches
=
torch
.
Tensor
(
matches
).
to
(
iouv
.
device
)
correct
[
matches
[:,
1
].
long
()]
=
matches
[:,
2
:
3
]
>=
iouv
return
correct
def
migraphx_yolov
(
model
,
data_tensor
):
#
将输入的
tensor
数据转换为
numpy
data_numpy
=
data_tensor
.
detach
().
cpu
().
numpy
()
device
=
torch
.
device
(
"cuda"
)
#
注意:这里需要执行赋值操作,否则会造成
migraphx
中输入数据步长不对
img_data
=
np
.
zeros
(
data_numpy
.
shape
).
astype
(
"float32"
)
for
i
in
range
(
data_numpy
.
shape
[
0
]):
img_data
[
i
,
:,
:,
:]
=
data_numpy
[
i
,
:,
:,
:]
#
执行推理
result
=
model
.
run
({
"images"
:
img_data
})
#
将结果转换为
tensor
result0
=
torch
.
from_numpy
(
np
.
array
(
result
[
0
],
copy
=
False
)).
to
(
device
)
return
result0
def
prepare_input
(
image
):
input_img
=
cv2
.
cvtColor
(
image
,
cv2
.
COLOR_BGR2RGB
)
input_img
=
cv2
.
resize
(
input_img
,
(
640
,
640
))
input_img
=
input_img
.
transpose
(
2
,
0
,
1
)
input_img
=
np
.
expand_dims
(
input_img
,
0
)
input_img
=
np
.
ascontiguousarray
(
input_img
)
input_img
=
input_img
.
astype
(
np
.
float32
)
input_img
=
input_img
/
255
return
input_img
def
run
(
data
,
weights
=
None
,
#
model
.
pt
path
(
s
)
batch_size
=
1
,
#
batch
size
imgsz
=
640
,
#
inference
size
(
pixels
)
conf_thres
=
0.001
,
#
confidence
threshold
iou_thres
=
0.65
,
#
NMS
IoU
threshold
device
=
''
,
#
cuda
device
,
i
.
e
.
0
or
0
,
1
,
2
,
3
or
cpu
single_cls
=
False
,
#
treat
as
single
-
class
dataset
save_hybrid
=
False
,
#
save
label
+
prediction
hybrid
results
to
*.
txt
dataloader
=
None
,
plots
=
False
,
):
resultdir
=
os
.
path
.
join
(
'results'
,
device
)
os
.
makedirs
(
resultdir
,
exist_ok
=
True
)
#
初始化模型并选择相应的计算设备
device
=
select_device
(
device
,
batch_size
=
batch_size
)
if
os
.
path
.
isfile
(
"/workspace/gaoruiqi_inference/cmcc-code/yolov5-6.0/yolov5m.mxr"
):
model
=
migraphx
.
load
(
"/workspace/gaoruiqi_inference/cmcc-code/yolov5-6.0/yolov5m.mxr"
)
else
:
#
解析推理模型
max_input
=
{
"images"
:[
24
,
3
,
1024
,
1024
]}
model
=
migraphx
.
parse_onnx
(
weights
,
map_input_dims
=
max_input
)
#
获取模型输入
/
输出节点信息
inputs
=
model
.
get_inputs
()
outputs
=
model
.
get_outputs
()
#
获取模型的输入
name
inputName
=
model
.
get_parameter_names
()[
0
]
#
获取模型的输入尺寸
inputShape
=
inputs
[
inputName
].
lens
()
inputHeight
=
int
(
inputShape
[
2
])
inputWidth
=
int
(
inputShape
[
3
])
migraphx
.
quantize_fp16
(
model
)
#
模型编译
model
.
compile
(
t
=
migraphx
.
get_target
(
"gpu"
)
,
device_id
=
0
)
gs
=
32
imgsz
=
640
#
Data
data
=
check_dataset
(
data
)
#
check
#
Configure
is_coco
=
isinstance
(
data
.
get
(
'val'
),
str
)
and
data
[
'val'
].
endswith
(
'coco/val2017.txt'
)
#
COCO
dataset
nc
=
int
(
data
[
'nc'
])
#
number
of
classes
iouv
=
torch
.
linspace
(
0.5
,
0.95
,
10
).
to
(
device
)
#
iou
vector
for
mAP
@
0.5
:
0.95
niou
=
iouv
.
numel
()
#
Dataloader
task
=
'val'
#
path
to
val
images
dataloader
=
create_dataloader
(
data
[
task
],
imgsz
,
batch_size
,
gs
,
single_cls
,
pad
=
0.5
,
rect
=
False
,
prefix
=
colorstr
(
f
'{task}: '
))[
0
]
seen
=
0
confusion_matrix
=
ConfusionMatrix
(
nc
=
nc
)
class_map
=
coco80_to_coco91_class
()
s
=
(
'%20s'
+
'%11s'
*
6
)
%
(
'Class'
,
'Images'
,
'Labels'
,
'P'
,
'R'
,
'mAP@.5'
,
'mAP@.5:.95'
)
dt
,
p
,
r
,
f1
,
mp
,
mr
,
map50
,
map
=
[
0.0
,
0.0
,
0.0
],
0.0
,
0.0
,
0.0
,
0.0
,
0.0
,
0.0
,
0.0
jdict
,
stats
,
ap
,
ap_class
=
[],
[],
[],
[]
#
数据预处理
i
=
0
for
batch_i
,
(
img
,
targets
,
paths
,
shapes
)
in
enumerate
(
tqdm
(
dataloader
,
desc
=
s
)):
img
=
img
.
to
(
device
,
non_blocking
=
True
)
img
=
img
.
half
()
img
/=
255.0
#
0
-
255
to
0.0
-
1.0
targets
=
targets
.
to
(
device
)
nb
,
_
,
height
,
width
=
img
.
shape
#
batch
size
,
channels
,
height
,
width
#
Run
model
out
=
migraphx_yolov
(
model
,
img
)
#
save
to
file
out
.
cpu
().
numpy
().
tofile
(
f
'{resultdir}/{i}_0.bin'
)
i
+=
1
#
Run
NMS
targets
[:,
2
:]
*=
torch
.
Tensor
([
width
,
height
,
width
,
height
]).
to
(
device
)
#
to
pixels
lb
=
[
targets
[
targets
[:,
0
]
==
i
,
1
:]
for
i
in
range
(
nb
)]
if
save_hybrid
else
[]
#
for
autolabelling
out
=
non_max_suppression
(
out
,
conf_thres
,
iou_thres
,
labels
=
lb
,
multi_label
=
True
,
agnostic
=
single_cls
)
#
Statistics
per
image
for
si
,
pred
in
enumerate
(
out
):
labels
=
targets
[
targets
[:,
0
]
==
si
,
1
:]
nl
=
len
(
labels
)
tcls
=
labels
[:,
0
].
tolist
()
if
nl
else
[]
#
target
class
path
,
shape
=
Path
(
paths
[
si
]),
shapes
[
si
][
0
]
seen
+=
1
if
len
(
pred
)
==
0
:
if
nl
:
stats
.
append
((
torch
.
zeros
(
0
,
niou
,
dtype
=
torch
.
bool
),
torch
.
Tensor
(),
torch
.
Tensor
(),
tcls
))
continue
#
Predictions
if
single_cls
:
pred
[:,
5
]
=
0
predn
=
pred
.
clone
()
scale_coords
(
img
[
si
].
shape
[
1
:],
predn
[:,
:
4
],
shape
,
shapes
[
si
][
1
])
#
native
-
space
pred
#
Evaluate
if
nl
:
tbox
=
xywh2xyxy
(
labels
[:,
1
:
5
])
#
target
boxes
scale_coords
(
img
[
si
].
shape
[
1
:],
tbox
,
shape
,
shapes
[
si
][
1
])
#
native
-
space
labels
labelsn
=
torch
.
cat
((
labels
[:,
0
:
1
],
tbox
),
1
)
#
native
-
space
labels
correct
=
process_batch
(
predn
,
labelsn
,
iouv
)
if
plots
:
confusion_matrix
.
process_batch
(
predn
,
labelsn
)
else
:
correct
=
torch
.
zeros
(
pred
.
shape
[
0
],
niou
,
dtype
=
torch
.
bool
)
stats
.
append
((
correct
.
cpu
(),
pred
[:,
4
].
cpu
(),
pred
[:,
5
].
cpu
(),
tcls
))
#
(
correct
,
conf
,
pcls
,
tcls
)
#
计算统计数据
stats
=
[
np
.
concatenate
(
x
,
0
)
for
x
in
zip
(*
stats
)]
#
to
numpy
if
len
(
stats
)
and
stats
[
0
].
any
():
p
,
r
,
ap
,
f1
,
ap_class
=
ap_per_class
(*
stats
,
plot
=
False
)
ap50
,
ap
=
ap
[:,
0
],
ap
.
mean
(
1
)
#
AP
@
0.5
,
AP
@
0.5
:
0.95
mp
,
mr
,
map50
,
map
=
p
.
mean
(),
r
.
mean
(),
ap50
.
mean
(),
ap
.
mean
()
nt
=
np
.
bincount
(
stats
[
3
].
astype
(
np
.
int64
),
minlength
=
nc
)
#
number
of
targets
per
class
else
:
nt
=
torch
.
zeros
(
1
)
#
Print
results
print
(
'map50:'
,
map50
)
print
(
'map50-95:'
,
map
)
def
parse_opt
():
parser
=
argparse
.
ArgumentParser
()
parser
.
add_argument
(
'--data'
,
type
=
str
,
default
=
ROOT
/
'data/coco128.yaml'
,
help
=
'dataset.yaml path'
)
parser
.
add_argument
(
'--weights'
,
type
=
str
,
default
=
''
,
help
=
'model.onnx path(s)'
)
parser
.
add_argument
(
'--batch-size'
,
type
=
int
,
default
=
32
,
help
=
'batch size'
)
parser
.
add_argument
(
'--imgsz'
,
'--img'
,
'--img-size'
,
type
=
int
,
default
=
640
,
help
=
'inference size (pixels)'
)
parser
.
add_argument
(
'--conf-thres'
,
type
=
float
,
default
=
0.001
,
help
=
'confidence threshold'
)
parser
.
add_argument
(
'--iou-thres'
,
type
=
float
,
default
=
0.6
,
help
=
'NMS IoU threshold'
)
parser
.
add_argument
(
'--device'
,
default
=
''
,
help
=
'cuda device, i.e. 0 or 0,1,2,3 or cpu'
)
opt
=
parser
.
parse_args
()
opt
.
data
=
check_yaml
(
opt
.
data
)
#
check
YAML
print_args
(
FILE
.
stem
,
opt
)
return
opt
def
main
(
opt
):
#
检测
requirements
文件中需要的包是否安装好了
check_requirements
(
exclude
=(
'tensorboard'
,
'thop'
))
run
(**
vars
(
opt
))
if
__name__
==
"__main__"
:
opt
=
parse_opt
()
main
(
opt
)
yolo/yolov5_cmcc/ana.sh
→
yolo/yolov5_cmcc/
tools/
ana.sh
View file @
00169466
File moved
yolo/yolov5_cmcc/migraphx_eval.py
→
yolo/yolov5_cmcc/
tools/
migraphx_eval.py
View file @
00169466
...
...
@@ -98,23 +98,6 @@ def process_batch(detections, labels, iouv):
correct
[
matches
[:,
1
].
long
()]
=
matches
[:,
2
:
3
]
>=
iouv
return
correct
def
migraphx_yolov
(
model
,
data_tensor
):
# 将输入的tensor数据转换为numpy
data_numpy
=
data_tensor
.
detach
().
cpu
().
numpy
()
device
=
torch
.
device
(
"cuda"
)
# 注意:这里需要执行赋值操作,否则会造成migraphx中输入数据步长不对
img_data
=
np
.
zeros
(
data_numpy
.
shape
).
astype
(
"float32"
)
for
i
in
range
(
data_numpy
.
shape
[
0
]):
img_data
[
i
,
:,
:,
:]
=
data_numpy
[
i
,
:,
:,
:]
# 执行推理
result
=
model
.
run
({
"images"
:
img_data
})
# 将结果转换为tensor
result0
=
torch
.
from_numpy
(
np
.
array
(
result
[
0
],
copy
=
False
)).
to
(
device
)
return
result0
def
prepare_input
(
image
):
input_img
=
cv2
.
cvtColor
(
image
,
cv2
.
COLOR_BGR2RGB
)
...
...
@@ -147,33 +130,21 @@ def run(data,
# 初始化模型并选择相应的计算设备
device
=
select_device
(
device
,
batch_size
=
batch_size
)
if
os
.
path
.
isfile
(
"/home/sunzhq/workspace/yidong/yolo/yolov5_cmcc/yolov5m_fp16.mxr"
):
model
=
migraphx
.
load
(
"/home/sunzhq/workspace/yidong/yolo/yolov5_cmcc/yolov5m_fp16.mxr"
)
else
:
if
weights
.
split
(
"."
)[
-
1
]
==
"mxr"
:
model
=
migraphx
.
load
(
weights
)
inputName
=
list
(
model
.
get_inputs
().
keys
())[
0
]
elif
weights
.
split
(
"."
)[
-
1
]
==
"onnx"
:
# 解析推理模型
max_input
=
{
"images"
:[
24
,
3
,
640
,
640
]}
model
=
migraphx
.
parse_onnx
(
weights
,
map_input_dims
=
max_input
)
# 获取模型输入/输出节点信息
inputs
=
model
.
get_inputs
()
outputs
=
model
.
get_outputs
()
# 获取模型的输入name
inputName
=
model
.
get_parameter_names
()[
0
]
# 获取模型的输入尺寸
inputShape
=
inputs
[
inputName
].
lens
()
inputHeight
=
int
(
inputShape
[
2
])
inputWidth
=
int
(
inputShape
[
3
])
migraphx
.
quantize_fp16
(
model
)
# 模型编译
model
.
compile
(
t
=
migraphx
.
get_target
(
"gpu"
),
offlod_copy
=
False
,
device_id
=
0
)
inputName
=
list
(
model
.
get_inputs
().
keys
())[
0
]
modelData
=
AllocateOutputMemory
(
model
)
else
:
print
(
"请输出正确的模型路径"
)
modelData
=
AllocateOutputMemory
(
model
)
gs
=
32
imgsz
=
640
...
...
@@ -205,21 +176,19 @@ def run(data,
total_infer_times
=
[]
total_start
=
time
.
time
()
all_images
=
[]
for
batch_i
,
(
img
,
targets
,
paths
,
shapes
)
in
enumerate
(
tqdm
(
dataloader
,
desc
=
s
)):
for
img
,
_
,
_
,
_
in
dataloader
:
img
=
img
.
float
()
/
255.0
img_np
=
img
.
numpy
()
all_images
.
append
(
img_np
.
astype
(
np
.
float32
))
# warm up
modelData
[
inputName
]
=
migraphx
.
to_gpu
(
migraphx
.
argument
(
all_images
[
0
]))
model
.
run
(
modelData
)
for
batch_i
,
(
_
,
targets
,
paths
,
shapes
)
in
enumerate
(
tqdm
(
dataloader
,
desc
=
s
)):
# modelData[inputName] = migraphx.to_gpu(migraphx.argument(img_data))
# preds_dcu = model.run(modelData)
# img = img.to(device, non_blocking=True)
img
=
all_images
[
batch_i
]
modelData
[
inputName
]
=
migraphx
.
to_gpu
(
migraphx
.
argument
(
img
))
# img = img.half()
# img /= 255.0 # 0 - 255 to 0.0 - 1.0
targets
=
targets
.
to
(
device
)
nb
,
_
,
height
,
width
=
img
.
shape
# batch size, channels, height, width
...
...
@@ -227,7 +196,6 @@ def run(data,
break
start
=
time
.
time
()
# Run model
# out = migraphx_yolov(model, img)
out
=
model
.
run
(
modelData
)
infer_times
.
append
(
time
.
time
()
-
start
)
total_infer_times
.
append
(
time
.
time
()
-
total_start
)
...
...
@@ -255,7 +223,7 @@ def run(data,
save_coco_json
(
pred
,
pred_results
,
image_id
,
coco80_to_coco91_class
())
total_start
=
time
.
time
()
pred_json_file
=
f
"yolov5m_predictions
{
this_file_device
}
.json"
pred_json_file
=
f
"
./results/
yolov5m_predictions
{
this_file_device
}
.json"
with
open
(
pred_json_file
,
'w'
)
as
f
:
json
.
dump
(
pred_results
,
f
)
...
...
@@ -278,8 +246,8 @@ def run(data,
def
parse_opt
():
parser
=
argparse
.
ArgumentParser
()
parser
.
add_argument
(
'--data'
,
type
=
str
,
default
=
ROOT
/
'data/coco128.yaml'
,
help
=
'dataset.yaml path'
)
parser
.
add_argument
(
'--weights'
,
type
=
str
,
default
=
''
,
help
=
'model.onnx path(s)'
)
parser
.
add_argument
(
'--data'
,
type
=
str
,
default
=
ROOT
/
'
../
data/coco128.yaml'
,
help
=
'dataset.yaml path'
)
parser
.
add_argument
(
'--weights'
,
type
=
str
,
default
=
'
'
,
help
=
'model.onnx path(s)'
)
parser
.
add_argument
(
'--batch-size'
,
type
=
int
,
default
=
32
,
help
=
'batch size'
)
parser
.
add_argument
(
'--imgsz'
,
'--img'
,
'--img-size'
,
type
=
int
,
default
=
640
,
help
=
'inference size (pixels)'
)
parser
.
add_argument
(
'--conf-thres'
,
type
=
float
,
default
=
0.001
,
help
=
'confidence threshold'
)
...
...
yolo/yolov5_cmcc/onnx_inference.sh
→
yolo/yolov5_cmcc/
tools/
onnx_inference.sh
View file @
00169466
...
...
@@ -2,15 +2,15 @@ export PYTHONPATH=/opt/dtk/lib:$PYTHONPATH
export
HIP_PRINTF_DEBUG_FOR_FP64
=
0
export
HIP_VISIBLE_DEVICES
=
0
#
python migraphx_eval.py --img 640 --batch-size 24 --data coco.yaml --weight
.
/yolov5m
.onnx
--device 0
python
./tools/
migraphx_eval.py
--img
640
--batch-size
24
--data
coco.yaml
--weight
/models
/yolov5m
_fp16.mxr
--device
0
nohup
numactl
-N
0
-m
0 python migraphx_eval.py
--img
640
--batch-size
24
--data
coco.yaml
--weight
./yolov5m.onnx
--device
0 2>&1 |
tee
result_0.log &
export
HIP_VISIBLE_DEVICES
=
1
nohup
numactl
-N
1
-m
1 python migraphx_eval.py
--img
640
--batch-size
24
--data
coco.yaml
--weight
./yolov5m.onnx
--device
1 2>&1 |
tee
result_1.log &
export
HIP_VISIBLE_DEVICES
=
2
nohup
numactl
-N
2
-m
2 python migraphx_eval.py
--img
640
--batch-size
24
--data
coco.yaml
--weight
./yolov5m.onnx
--device
2 2>&1 |
tee
result_2.log &
export
HIP_VISIBLE_DEVICES
=
3
nohup
numactl
-N
3
-m
3 python migraphx_eval.py
--img
640
--batch-size
24
--data
coco.yaml
--weight
./yolov5m.onnx
--device
3 2>&1 |
tee
result_3.log &
#
nohup numactl -N 0 -m 0 python migraphx_eval.py --img 640 --batch-size 24 --data coco.yaml --weight ./yolov5m.onnx --device 0 2>&1 | tee result_0.log &
#
export HIP_VISIBLE_DEVICES=1
#
nohup numactl -N 1 -m 1 python migraphx_eval.py --img 640 --batch-size 24 --data coco.yaml --weight ./yolov5m.onnx --device 1 2>&1 | tee result_1.log &
#
export HIP_VISIBLE_DEVICES=2
#
nohup numactl -N 2 -m 2 python migraphx_eval.py --img 640 --batch-size 24 --data coco.yaml --weight ./yolov5m.onnx --device 2 2>&1 | tee result_2.log &
#
export HIP_VISIBLE_DEVICES=3
#
nohup numactl -N 3 -m 3 python migraphx_eval.py --img 640 --batch-size 24 --data coco.yaml --weight ./yolov5m.onnx --device 3 2>&1 | tee result_3.log &
# nohup python migraphx_eval.py --img 640 --batch-size 24 --data coco.yaml --weight ./yolov5m.onnx --device 4 2>&1 | tee result_4.log &
...
...
yolo/yolov5_cmcc/onnx_to_mxr.py
→
yolo/yolov5_cmcc/
tools/
onnx_to_mxr.py
View file @
00169466
File moved
yolo/yolov5_cmcc/post.sh
→
yolo/yolov5_cmcc/
tools/
post.sh
View file @
00169466
File moved
Write
Preview
Markdown
is supported
0%
Try again
or
attach a new file
.
Attach a file
Cancel
You are about to add
0
people
to the discussion. Proceed with caution.
Finish editing this message first!
Cancel
Please
register
or
sign in
to comment