layers.py 69.7 KB
Newer Older
sunzhq2's avatar
sunzhq2 committed
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
import torch
from torch.functional import Tensor
import torch.nn as nn
import torch.nn.functional as F
import numpy as np
import math
from bert4torch.snippets import get_sinusoid_encoding_table, take_along_dim
from bert4torch.activations import get_activation
from typing import List, Optional
import random
import warnings


class LayerNorm(nn.Module):
    def __init__(self, hidden_size, eps=1e-12, conditional_size=False, weight=True, bias=True, norm_mode='normal', **kwargs):
        """layernorm 层,这里自行实现,目的是为了兼容 conditianal layernorm,使得可以做条件文本生成、条件分类等任务
           条件layernorm来自于苏剑林的想法,详情:https://spaces.ac.cn/archives/7124
        """
        super(LayerNorm, self).__init__()
        
        # 兼容roformer_v2不包含weight
        if weight:
            self.weight = nn.Parameter(torch.ones(hidden_size))
        # 兼容t5不包含bias项, 和t5使用的RMSnorm
        if bias:
            self.bias = nn.Parameter(torch.zeros(hidden_size))
        self.norm_mode = norm_mode

        self.eps = eps
        self.conditional_size = conditional_size
        if conditional_size:
            # 条件layernorm, 用于条件文本生成,
            # 这里采用全零初始化, 目的是在初始状态不干扰原来的预训练权重
            self.dense1 = nn.Linear(conditional_size, hidden_size, bias=False)
            self.dense1.weight.data.uniform_(0, 0)
            self.dense2 = nn.Linear(conditional_size, hidden_size, bias=False)
            self.dense2.weight.data.uniform_(0, 0)

    def forward(self, x):
        inputs = x[0]

        if self.norm_mode == 'rmsnorm':
            # t5使用的是RMSnorm
            variance = inputs.to(torch.float32).pow(2).mean(-1, keepdim=True)
            o = inputs * torch.rsqrt(variance + self.eps)
        else:
            u = inputs.mean(-1, keepdim=True)
            s = (inputs - u).pow(2).mean(-1, keepdim=True)
            o = (inputs - u) / torch.sqrt(s + self.eps)

        if not hasattr(self, 'weight'):
            self.weight = 1
        if not hasattr(self, 'bias'):
            self.bias = 0

        if self.conditional_size:
            cond = x[1]
            for _ in range(len(inputs.shape) - len(cond.shape)):
                cond = cond.unsqueeze(dim=1)
            return (self.weight + self.dense1(cond)) * o + (self.bias + self.dense2(cond))
        else:
            return self.weight * o + self.bias


class MultiHeadAttentionLayer(nn.Module):
    def __init__(self, hidden_size, num_attention_heads, attention_probs_dropout_prob, attention_scale=True,
                 return_attention_scores=False, bias=True, **kwargs):
        super(MultiHeadAttentionLayer, self).__init__()
        self.hidden_size = hidden_size
        self.num_attention_heads = num_attention_heads
        # assert hidden_size % num_attention_heads == 0  # 旧逻辑,t5_pegasus_small中不可以整除
        # 兼容t5_pegasus_small
        if kwargs.get('attention_head_size'):
            self.attention_head_size = kwargs.get('attention_head_size')
        else:
            self.attention_head_size = int(hidden_size / num_attention_heads)
        self.inner_dim = self.num_attention_heads * self.attention_head_size  # 新逻辑
        self.attention_scale = attention_scale
        self.return_attention_scores = return_attention_scores

        self.bias = bias
        self.q = nn.Linear(hidden_size, self.inner_dim, bias=bias)
        self.k = nn.Linear(hidden_size, self.inner_dim, bias=bias)
        self.v = nn.Linear(hidden_size, self.inner_dim, bias=bias)
        self.o = nn.Linear(self.inner_dim, hidden_size, bias=bias)
        self.dropout = nn.Dropout(attention_probs_dropout_prob)

        self.a_bias, self.p_bias = kwargs.get('a_bias'), kwargs.get('p_bias')

        if self.p_bias == 'typical_relative':  # nezha
            self.relative_positions_encoding = RelativePositionsEncoding(qlen=kwargs.get('max_position'),
                                                                         klen=kwargs.get('max_position'),
                                                                         embedding_size=self.attention_head_size,
                                                                         max_relative_position=kwargs.get('max_relative_position'))
        elif self.p_bias == 'rotary':  # roformer
            self.relative_positions_encoding = RoPEPositionEncoding(max_position=kwargs.get('max_position'), embedding_size=self.attention_head_size)
        elif self.p_bias == 't5_relative':  # t5
            self.relative_positions = RelativePositionsEncodingT5(qlen=kwargs.get('max_position'), 
                                                                  klen=kwargs.get('max_position'), 
                                                                  relative_attention_num_buckets=kwargs.get('relative_attention_num_buckets'), 
                                                                  is_decoder=kwargs.get('is_decoder'))
            self.relative_positions_encoding = nn.Embedding(kwargs.get('relative_attention_num_buckets'), self.num_attention_heads)

    def transpose_for_scores(self, x):
        new_x_shape = x.size()[:-1] + (self.num_attention_heads, self.attention_head_size)
        x = x.view(*new_x_shape)
        return x.permute(0, 2, 1, 3)

    def forward(self, hidden_states, attention_mask=None, encoder_hidden_states=None, encoder_attention_mask=None):
        # hidden_states shape: [batch_size, seq_q, hidden_size]
        # attention_mask shape: [batch_size, 1, 1, seq_q] 或者 [batch_size, 1, seq_q, seq_q]
        # encoder_hidden_states shape: [batch_size, seq_k, hidden_size]
        # encoder_attention_mask shape: [batch_size, 1, 1, seq_k]

        mixed_query_layer = self.q(hidden_states)
        if encoder_hidden_states is not None:
            mixed_key_layer = self.k(encoder_hidden_states)
            mixed_value_layer = self.v(encoder_hidden_states)
            attention_mask = encoder_attention_mask
        else:
            mixed_key_layer = self.k(hidden_states)
            mixed_value_layer = self.v(hidden_states)
        # mixed_query_layer shape: [batch_size, query_len, hidden_size]
        # mixed_query_layer shape: [batch_size, key_len, hidden_size]
        # mixed_query_layer shape: [batch_size, value_len, hidden_size]

        query_layer = self.transpose_for_scores(mixed_query_layer)
        key_layer = self.transpose_for_scores(mixed_key_layer)
        value_layer = self.transpose_for_scores(mixed_value_layer)
        # query_layer shape: [batch_size, num_attention_heads, query_len, attention_head_size]
        # key_layer shape: [batch_size, num_attention_heads, key_len, attention_head_size]
        # value_layer shape: [batch_size, num_attention_heads, value_len, attention_head_size]

        if self.p_bias == 'rotary':
            query_layer = self.relative_positions_encoding(query_layer)
            key_layer = self.relative_positions_encoding(key_layer)

        # 交换k的最后两个维度,然后q和k执行点积, 获得attention score
        attention_scores = torch.matmul(query_layer, key_layer.transpose(-1, -2))

        # attention_scores shape: [batch_size, num_attention_heads, query_len, key_len]
        if (self.p_bias == 'typical_relative') and hasattr(self, 'relative_positions_encoding'):
            relations_keys = self.relative_positions_encoding(attention_scores.shape[-1], attention_scores.shape[-1])  # [to_seq_len, to_seq_len, d_hid]
            # 旧实现,方便读者理解维度转换
            # query_layer_t = query_layer.permute(2, 0, 1, 3)
            # query_layer_r = query_layer_t.contiguous().view(from_seq_length, batch_size * num_attention_heads, self.attention_head_size)
            # key_position_scores = torch.matmul(query_layer_r, relations_keys.permute(0, 2, 1))
            # key_position_scores_r = key_position_scores.view(from_seq_length, batch_size, num_attention_heads, from_seq_length)
            # key_position_scores_r_t = key_position_scores_r.permute(1, 2, 0, 3)
            # 新实现
            key_position_scores_r_t = torch.einsum('bnih,ijh->bnij', query_layer, relations_keys)
            attention_scores = attention_scores + key_position_scores_r_t
        elif (self.p_bias == 't5_relative') and hasattr(self, 'relative_positions_encoding'):
            relations_keys = self.relative_positions(attention_scores.shape[-1], attention_scores.shape[-1])
            key_position_scores_r_t = self.relative_positions_encoding(relations_keys).permute([2, 0, 1]).unsqueeze(0)
            attention_scores = attention_scores + key_position_scores_r_t

        # 是否进行attention scale
        if self.attention_scale:
            attention_scores = attention_scores / math.sqrt(self.attention_head_size)
        # 执行attention mask,对于mask为0部分的attention mask,
        # 值为-1e10,经过softmax后,attention_probs几乎为0,所以不会attention到mask为0的部分
        if attention_mask is not None:
            # attention_scores = attention_scores.masked_fill(attention_mask == 0, -1e10)
            attention_mask = (1.0 - attention_mask) * -10000.0  # 所以传入的mask的非padding部分为1, padding部分为0
            attention_scores = attention_scores + attention_mask

        # 将attention score 归一化到0-1
        attention_probs = F.softmax(attention_scores, dim=-1)
        attention_probs = self.dropout(attention_probs)
        context_layer = torch.matmul(attention_probs, value_layer)  # [batch_size, num_attention_heads, query_len, attention_head_size]

        if (self.p_bias == 'typical_relative') and hasattr(self, 'relative_positions_encoding'):
            relations_values = self.relative_positions_encoding(attention_scores.shape[-1], attention_scores.shape[-1])
            # 旧实现,方便读者理解维度转换
            # attention_probs_t = attention_probs.permute(2, 0, 1, 3)
            # attentions_probs_r = attention_probs_t.contiguous().view(from_seq_length, batch_size * num_attention_heads, to_seq_length)
            # value_position_scores = torch.matmul(attentions_probs_r, relations_values)
            # value_position_scores_r = value_position_scores.view(from_seq_length, batch_size, num_attention_heads, self.attention_head_size)
            # value_position_scores_r_t = value_position_scores_r.permute(1, 2, 0, 3)
            # 新实现
            value_position_scores_r_t = torch.einsum('bnij,ijh->bnih', attention_probs, relations_values)
            context_layer = context_layer + value_position_scores_r_t

        # context_layer shape: [batch_size, query_len, num_attention_heads, attention_head_size]
        # transpose、permute等维度变换操作后,tensor在内存中不再是连续存储的,而view操作要求tensor的内存连续存储,
        # 所以在调用view之前,需要contiguous来返回一个contiguous copy;
        context_layer = context_layer.permute(0, 2, 1, 3).contiguous()

        new_context_layer_shape = context_layer.size()[:-2] + (self.inner_dim,)
        context_layer = context_layer.view(*new_context_layer_shape)

        # 是否返回attention scores
        if self.return_attention_scores:
            # 这里返回的attention_scores没有经过softmax, 可在外部进行归一化操作
            return self.o(context_layer), attention_scores
        else:
            return self.o(context_layer)


class PositionWiseFeedForward(nn.Module):
    def __init__(self, hidden_size, intermediate_size, dropout_rate=0.5, hidden_act='gelu', is_dropout=False, bias=True, **kwargs):
        # 原生的tf版本的bert在激活函数后,没有添加dropout层,但是在google AI的bert-pytorch开源项目中,多了一层dropout;
        # 并且在pytorch官方的TransformerEncoderLayer的实现中,也有一层dropout层,就像这样:self.linear2(self.dropout(self.activation(self.linear1(src))));
        # 这样不统一做法的原因不得而知,不过有没有这一层,差别可能不会很大;

        # 为了适配是否dropout,用is_dropout,dropout_rate两个参数控制;如果是实现原始的transformer,直接使用默认参数即可;如果是实现bert,则is_dropout为False,此时的dropout_rate参数并不会使用.
        super(PositionWiseFeedForward, self).__init__()

        self.is_dropout = is_dropout
        self.intermediate_act_fn = get_activation(hidden_act)
        self.intermediateDense = nn.Linear(hidden_size, intermediate_size, bias=bias)
        self.outputDense = nn.Linear(intermediate_size, hidden_size, bias=bias)
        if self.is_dropout:
            self.dropout = nn.Dropout(dropout_rate)

    def forward(self, x):
        # x shape: (batch size, seq len, hidden_size)
        if self.is_dropout:
            x = self.dropout(self.intermediate_act_fn(self.intermediateDense(x)))
        else:
            x = self.intermediate_act_fn(self.intermediateDense(x))

        # x shape: (batch size, seq len, intermediate_size)
        x = self.outputDense(x)

        # x shape: (batch size, seq len, hidden_size)
        return x


class GatedAttentionUnit(nn.Module):
    '''门控注意力单元,
    链接:https://arxiv.org/abs/2202.10447
    介绍:https://kexue.fm/archives/8934
    说明:没有加入加性相对位置编码
    参考pytorch项目:https://github.com/lucidrains/FLASH-pytorch
    '''
    
    def __init__(self, hidden_size, attention_key_size, intermediate_size, attention_probs_dropout_prob, hidden_act, 
                 is_dropout=False, attention_scale=True, bias=True, normalization='softmax_plus', **kwargs):
        super().__init__()
        self.intermediate_size = intermediate_size
        self.attention_head_size = attention_key_size
        self.attention_scale = attention_scale
        self.is_dropout = is_dropout
        self.normalization = normalization
        self.hidden_fn = get_activation(hidden_act)
        self.dropout = nn.Dropout(attention_probs_dropout_prob)
        self.i_dense = nn.Linear(hidden_size, self.intermediate_size*2+attention_key_size, bias=bias)
        self.offsetscale = self.OffsetScale(attention_key_size, heads=2, bias=bias)
        self.o_dense = nn.Linear(self.intermediate_size, hidden_size, bias=bias)
        
        self.a_bias, self.p_bias = kwargs.get('a_bias'), kwargs.get('p_bias')
        if self.p_bias == 'rotary':  # RoPE
            self.relative_positions_encoding = RoPEPositionEncoding(max_position=kwargs.get('max_position'), embedding_size=self.attention_head_size)

    def forward(self, hidden_states, attention_mask):
        # 投影变换
        hidden_states = self.hidden_fn(self.i_dense(hidden_states))
        u, v, qk = hidden_states.split([self.intermediate_size, self.intermediate_size, self.attention_head_size], dim=-1)
        q, k = self.offsetscale(qk)  # 仿射变换

        # 加入RoPE
        if self.p_bias == 'rotary':
            q = self.relative_positions_encoding(q)
            k = self.relative_positions_encoding(k)

        # Attention
        attention_scores = torch.einsum('b i d, b j d -> b i j', q, k)  # [btz, seq_len, seq_len]
        if self.attention_scale:
            # seq_len = hidden_states.shape[1]
            # attention_scores = F.relu(attention_scores/seq_len) ** 2
             attention_scores = attention_scores / math.sqrt(self.attention_head_size)

        if attention_mask is not None:
            attention_mask = (1.0 - attention_mask) * -1e12
            attention_scores = attention_scores + attention_mask.squeeze(1)

        # 归一化
        attention_scores = self.attention_normalize(attention_scores, -1, self.normalization)

        if self.is_dropout:
            attention_scores = self.dropout(attention_scores)

        # 计算输出
        out = self.o_dense(u * torch.einsum('b i j, b j d -> b i d', attention_scores, v))
        return out
    
    def attention_normalize(self, a, dim=-1, method='softmax'):
        """不同的注意力归一化方案
        softmax:常规/标准的指数归一化;
        squared_relu:来自 https://arxiv.org/abs/2202.10447 ;
        softmax_plus:来自 https://kexue.fm/archives/8823 。
        """
        if method == 'softmax':
            return F.softmax(a, dim=dim)
        else:
            mask = (a > -1e11).float()
            l = torch.maximum(torch.sum(mask, dim=dim, keepdims=True), torch.tensor(1).to(mask))
            if method == 'squared_relu':
                return F.relu(a)**2 / l
            elif method == 'softmax_plus':
                return F.softmax(a * torch.log(l) / torch.log(torch.tensor(512)).to(mask), dim=dim)
        return a

    class OffsetScale(nn.Module):
        '''仿射变换
        '''
        def __init__(self, head_size, heads=1, bias=True):
            super().__init__()
            self.gamma = nn.Parameter(torch.ones(heads, head_size))
            self.bias = bias
            if bias:
                self.beta = nn.Parameter(torch.zeros(heads, head_size))
            nn.init.normal_(self.gamma, std = 0.02)

        def forward(self, x):
            out = torch.einsum('... d, h d -> ... h d', x, self.gamma)
            if self.bias:
                 out = out + self.beta
            return out.unbind(dim = -2)


class BertEmbeddings(nn.Module):
    """
        embeddings层
        构造word, position and token_type embeddings.
    """
    def __init__(self, vocab_size, embedding_size, hidden_size, max_position, segment_vocab_size, shared_segment_embeddings, drop_rate, conditional_size=False, **kwargs):
        super(BertEmbeddings, self).__init__()
        self.shared_segment_embeddings = shared_segment_embeddings
        self.word_embeddings = nn.Embedding(vocab_size, embedding_size, padding_idx=0)

        # 位置编码
        if kwargs.get('p_bias') == 'sinusoid':
            self.position_embeddings = SinusoidalPositionEncoding(max_position, embedding_size)
        elif kwargs.get('p_bias') in {'rotary', 'typical_relative', 't5_relative', 'other_relative'}:
            # 如果使用相对位置编码,则不声明PositionEmbeddings
            pass
        elif max_position > 0:
            self.position_embeddings = nn.Embedding(max_position, embedding_size)
        
        # segement编码
        if (segment_vocab_size > 0) and (not shared_segment_embeddings):
            self.segment_embeddings = nn.Embedding(segment_vocab_size, embedding_size)

        # emb_scale
        self.emb_scale = kwargs.get('emb_scale', 1)  # transform_xl, xlnet特有

        # LayerNorm
        self.layerNorm = LayerNorm(embedding_size, eps=1e-12, conditional_size=conditional_size, **kwargs)
        self.dropout = nn.Dropout(drop_rate)

        # 如果embedding_size != hidden_size,则再有一个linear(适用于albert矩阵分解)
        if embedding_size != hidden_size:
            self.embedding_hidden_mapping_in = nn.Linear(embedding_size, hidden_size)

    def forward(self, token_ids, segment_ids=None, conditional_emb=None, additional_embs=None):
        if (not token_ids.requires_grad) and (token_ids.dtype in {torch.long, torch.int}):
            words_embeddings = self.word_embeddings(token_ids)
        else:
            words_embeddings = token_ids  # 自定义word_embedding,目前仅有VAT中使用

        if hasattr(self, 'segment_embeddings'):
            segment_ids = torch.zeros_like(token_ids) if segment_ids is None else segment_ids
            segment_embeddings = self.segment_embeddings(segment_ids)  
            embeddings = words_embeddings + segment_embeddings
        elif self.shared_segment_embeddings:  # segment和word_embedding共享权重
            segment_ids = torch.zeros_like(token_ids) if segment_ids is None else segment_ids
            segment_embeddings = self.word_embeddings(segment_ids)  
            embeddings = words_embeddings + segment_embeddings
        else:
            embeddings = words_embeddings
        
        # 额外的embedding,如词性等
        if additional_embs is not None:
            for emb in additional_embs:
                embeddings += emb

        if hasattr(self, 'position_embeddings'):
            seq_length = token_ids.size(1)
            position_ids = torch.arange(seq_length, dtype=torch.long, device=token_ids.device)
            position_ids = position_ids.unsqueeze(0).repeat(token_ids.shape[0], 1)
            position_embeddings = self.position_embeddings(position_ids)
            embeddings += position_embeddings

        if self.emb_scale != 1:
            embeddings = embeddings * self.emb_scale  # transform_xl, xlnet特有

        if hasattr(self, 'layerNorm'):
            embeddings = self.layerNorm((embeddings, conditional_emb))
        embeddings = self.dropout(embeddings)

        if hasattr(self, 'embedding_hidden_mapping_in'):
            embeddings = self.embedding_hidden_mapping_in(embeddings)
        return embeddings


class BertLayer(nn.Module):
    """
        Transformer层:
        顺序为: Attention --> Add --> LayerNorm --> Feed Forward --> Add --> LayerNorm

        注意: 1、以上都不计dropout层,并不代表没有dropout,每一层的dropout使用略有不同,注意区分
              2、原始的Transformer的encoder中的Feed Forward层一共有两层linear,
              config.intermediate_size的大小不仅是第一层linear的输出尺寸,也是第二层linear的输入尺寸
    """
    def __init__(self, hidden_size, num_attention_heads, dropout_rate, attention_probs_dropout_prob, intermediate_size, hidden_act, 
                 is_dropout=False, conditional_size=False, **kwargs):
        super(BertLayer, self).__init__()
        self.multiHeadAttention = MultiHeadAttentionLayer(hidden_size, num_attention_heads, attention_probs_dropout_prob, **kwargs)
        self.dropout1 = nn.Dropout(dropout_rate)
        self.layerNorm1 = LayerNorm(hidden_size, eps=1e-12, conditional_size=conditional_size, **kwargs)
        self.feedForward = PositionWiseFeedForward(hidden_size, intermediate_size, dropout_rate, hidden_act, is_dropout=is_dropout, **kwargs)
        self.dropout2 = nn.Dropout(dropout_rate)
        self.layerNorm2 = LayerNorm(hidden_size, eps=1e-12, conditional_size=conditional_size, **kwargs)
        self.is_decoder = kwargs.get('is_decoder')
        if self.is_decoder:
            self.crossAttention = MultiHeadAttentionLayer(hidden_size, num_attention_heads, attention_probs_dropout_prob, **kwargs)
            self.dropout3 = nn.Dropout(dropout_rate)
            self.layerNorm3 = LayerNorm(hidden_size, eps=1e-12, conditional_size=conditional_size, **kwargs)

    def forward(self, hidden_states, attention_mask, conditional_emb=None, encoder_hidden_states=None, encoder_attention_mask=None):
        self_attn_output = self.multiHeadAttention(hidden_states, attention_mask)  # self.decoder为true时候,这里的attention_mask是三角的
        hidden_states = hidden_states + self.dropout1(self_attn_output)
        hidden_states = self.layerNorm1((hidden_states, conditional_emb))
        
        # cross attention
        if self.is_decoder and encoder_hidden_states is not None:
            cross_attn_output = self.crossAttention(hidden_states, None, encoder_hidden_states, encoder_attention_mask)
            hidden_states = hidden_states + self.dropout3(cross_attn_output)
            hidden_states = self.layerNorm3((hidden_states, conditional_emb))
            
        self_attn_output2 = self.feedForward(hidden_states)
        hidden_states = hidden_states + self.dropout2(self_attn_output2)
        hidden_states = self.layerNorm2((hidden_states, conditional_emb))
        return hidden_states


class T5Layer(BertLayer):
    """T5的Encoder的主体是基于Self-Attention的模块
    顺序:LN --> Att --> Add --> LN --> FFN --> Add
    """
    def __init__(self, *args, version='t5.1.0', **kwargs):
        super().__init__(*args, **kwargs)

        # 如果是t5.1.1结构,则FFN层需要变更
        if version.endswith('t5.1.1'):
            kwargs['dropout_rate'] = args[2]
            kwargs['hidden_act'] = args[5]
            self.feedForward = self.T5PositionWiseFeedForward(hidden_size=args[0], intermediate_size=args[4], **kwargs)

        # decoder中间有crossAttention
        if self.is_decoder and hasattr(self.crossAttention, 'relative_positions_encoding'):
            del self.crossAttention.relative_positions_encoding
            del self.crossAttention.relative_positions

    def forward(self, hidden_states, attention_mask, conditional_emb=None, encoder_hidden_states=None, encoder_attention_mask=None):
        # bert的layernorm是在attn/ffc之后,Openai-gpt2是在之前
        x = self.layerNorm1((hidden_states, conditional_emb))
        self_attn_output = self.multiHeadAttention(x, attention_mask)
        hidden_states = hidden_states + self.dropout1(self_attn_output)

        # cross attention
        if self.is_decoder and encoder_hidden_states is not None:
            x = self.layerNorm3((hidden_states, conditional_emb))
            cross_attn_output = self.crossAttention(x, None, encoder_hidden_states, encoder_attention_mask)
            hidden_states = hidden_states + self.dropout3(cross_attn_output)

        x = self.layerNorm2((hidden_states, conditional_emb))
        ffn_output = self.feedForward(x)
        hidden_states = hidden_states + self.dropout2(ffn_output)
        return hidden_states

    class T5PositionWiseFeedForward(PositionWiseFeedForward):
        '''参考transformer包: https://github.com/huggingface/transformers/blob/main/src/transformers/models/t5/modeling_t5.py
        '''
        def __init__(self, hidden_size, intermediate_size, **kwargs):
            super().__init__(hidden_size, intermediate_size, **kwargs)
            self.intermediateDense = nn.Linear(hidden_size, intermediate_size, bias=False)
            self.intermediateDense1 = nn.Linear(hidden_size, intermediate_size, bias=False)
            self.outputDense = nn.Linear(intermediate_size, hidden_size, bias=False)

        def forward(self, x):
            # x shape: (batch size, seq len, hidden_size)
            x_gelu = self.intermediate_act_fn(self.intermediateDense(x))
            x_linear = self.intermediateDense1(x)
            x = x_gelu * x_linear
            if self.is_dropout:
                x = self.dropout(x)

            # x shape: (batch size, seq len, intermediate_size)
            x = self.outputDense(x)

            # x shape: (batch size, seq len, hidden_size)
            return x


class XlnetLayer(BertLayer):
    '''Transformer_XL层
    顺序为: Attention --> Add --> LayerNorm --> Feed Forward --> Add --> LayerNorm
    '''
    def __init__(self, hidden_size, num_attention_heads, dropout_rate, attention_probs_dropout_prob, intermediate_size, hidden_act, **kwargs):
        super().__init__(hidden_size, num_attention_heads, dropout_rate, attention_probs_dropout_prob, intermediate_size, hidden_act, **kwargs)
        self.pre_lnorm = kwargs.get('pre_lnorm')
        # multiattn层无bias
        self.multiHeadAttention = self.RelPartialLearnableMultiHeadAttn(hidden_size, num_attention_heads, attention_probs_dropout_prob, bias=False, **kwargs)

    def forward(self, hidden_states, segment_ids, pos_emb, attention_mask, mems_i, conditional_emb=None):
        # 拼接mems和query,mems_i: [btz, m_len, hdsz], w: [btz, q_len, hdsz] = [btz, k_len, hdsz]
        hidden_states_cat = torch.cat([mems_i, hidden_states], 1) if mems_i is not None else hidden_states
        
        # Attn
        if self.pre_lnorm:
            hidden_states_cat = self.layerNorm1((hidden_states_cat, conditional_emb))
        self_attn_output = self.multiHeadAttention(hidden_states, hidden_states_cat, pos_emb, attention_mask, segment_ids)
        hidden_states = hidden_states + self.dropout1(self_attn_output)
        if not self.pre_lnorm:  # post_lnorm
            hidden_states = self.layerNorm1((hidden_states, conditional_emb))

        # FFN
        x = self.layerNorm2((hidden_states, conditional_emb)) if self.pre_lnorm else hidden_states
        self_attn_output2 = self.feedForward(x)
        hidden_states = hidden_states + self.dropout2(self_attn_output2)
        if not self.pre_lnorm:  # post_lnorm
            hidden_states = self.layerNorm2((hidden_states, conditional_emb))
        return hidden_states

    class RelPartialLearnableMultiHeadAttn(MultiHeadAttentionLayer):
        '''Transformer_XL式相对位置编码, 这里修改成了MultiHeadAttentionLayer的batch_first代码格式
        '''
        def __init__(self, *args, r_w_bias=None, r_r_bias=None, r_s_bias=None, **kwargs):
            super().__init__(*args, **kwargs)
            segment_vocab_size = kwargs.get('segment_vocab_size')
            if r_r_bias is None or r_w_bias is None:  # Biases are not shared
                self.r_r_bias = nn.Parameter(torch.FloatTensor(self.num_attention_heads, self.attention_head_size))  # 全局内容偏置
                self.r_w_bias = nn.Parameter(torch.FloatTensor(self.num_attention_heads, self.attention_head_size))  # 全局位置偏置
                if segment_vocab_size > 0:
                    self.r_s_bias = nn.Parameter(torch.FloatTensor(self.num_attention_heads, self.attention_head_size))  # 全局segment偏置
            else:  # 所有层公用一个
                self.r_r_bias = r_r_bias
                self.r_w_bias = r_w_bias
                self.r_s_bias = r_s_bias
            if segment_vocab_size > 0:
                # self.seg_embed = nn.Embedding(segment_vocab_size, self.hidden_size)
                self.seg_embed = nn.Parameter(torch.FloatTensor(segment_vocab_size, self.num_attention_heads, self.attention_head_size))

            self.r = nn.Linear(self.hidden_size, self.hidden_size, bias=self.bias)
            self.rel_shift_opt = kwargs.get('rel_shift_opt')

        @staticmethod
        def rel_shift(x, zero_triu=False):
            '''transformer_xl使用, 向左shift让右上角都是0, 对角线是同一个值, x: [btz, n_head, q_len, k_len]
            '''
            q_len, k_len = x.size(2), x.size(-1)
            zero_pad = torch.zeros((*x.size()[:2], q_len, 1), device=x.device, dtype=x.dtype)
            x_padded = torch.cat([zero_pad, x], dim=-1)
            x_padded = x_padded.view(*x.size()[:2], k_len + 1, q_len)
            x = x_padded[:,:,1:,:].view_as(x)
            if zero_triu:
                ones = torch.ones((q_len, k_len), device=x.device)
                x = x * torch.tril(ones, k_len - q_len)[None,None,:,:]
            return x

        @staticmethod
        def rel_shift_bnij(x, klen=-1):
            ''' xlnet使用
            '''
            x_size = x.shape
            x = x.reshape(x_size[0], x_size[1], x_size[3], x_size[2])
            x = x[:, :, 1:, :]
            x = x.reshape(x_size[0], x_size[1], x_size[2], x_size[3] - 1)
            x = torch.index_select(x, 3, torch.arange(klen, device=x.device, dtype=torch.long))
            # x = x[:, :, :, :klen]
            return x

        def forward(self, w, cat, r, attention_mask=None, seg_mat=None):
            # w: 词向量[btz, q_len, hdsz], cat: w和mem_i拼接后向量[btz, k_len, hdsz], r:相对位置向量[r_len, hdsz]
            qlen, rlen, bsz = w.size(1), r.size(0), w.size(0)
            
            mixed_query_layer = self.q(cat)[:, -qlen:, :]  # 仅取用query部分,不适用mem部分
            mixed_key_layer = self.k(cat)
            mixed_value_layer = self.v(cat)

            w_head_q = self.transpose_for_scores(mixed_query_layer)  # [btz, n_head, q_len, d_head]
            w_head_k = self.transpose_for_scores(mixed_key_layer)  # [btz, n_head, k_len, d_head]
            w_head_v = self.transpose_for_scores(mixed_value_layer)  # [btz, n_head, k_len, d_head]

            r_head_k = self.r(r)  # [hdsz, nhead*headsize] = [r_len, 1, nhead*headsize]
            r_head_k = r_head_k.view(rlen, self.num_attention_heads, self.attention_head_size)  # rlen x n_head x d_head

            #### compute attention score
            rw_head_q = w_head_q + self.r_w_bias.unsqueeze(1)  # [btz, n_head, q_len, d_head]
            AC = torch.einsum('bnid,bnjd->bnij', (rw_head_q, w_head_k))  # [btz, n_head, q_len, k_len]

            rr_head_q = w_head_q + self.r_r_bias.unsqueeze(1)  # [btz, n_head, q_len, d_head]
            BD = torch.einsum('bnid,jnd->bnij', (rr_head_q, r_head_k))  # [btz, n_head, q_len, k_len]
            BD = self.rel_shift_bnij(BD, klen=AC.shape[3]) if self.rel_shift_opt == 'xlnet' else self.rel_shift(BD)

            if hasattr(self, 'seg_embed') and (self.r_r_bias is not None):
                # # 之前的方式,需要配合Embedding,以及load_variable和variable_mapping,显存容易爆炸
                # w_head_s = self.seg_embed(seg_mat)  # [btz, q_len, klen, hdsz]
                # w_head_s = w_head_s.reshape(*w_head_s.shape[:3], self.num_attention_heads, self.attention_head_size)
                # rs_head_q = w_head_q + self.r_s_bias.unsqueeze(1)
                # EF = torch.einsum('bnid,bijnd->bnij', (rs_head_q, w_head_s))  # [btz, n_head, q_len, k_len]
                
                seg_mat = F.one_hot(seg_mat, 2).float()
                EF = torch.einsum("bnid,snd->ibns", w_head_q + self.r_s_bias.unsqueeze(1), self.seg_embed)
                EF = torch.einsum("bijs,ibns->bnij", seg_mat, EF)
            else:
                EF = 0

            # # [btz, n_head, q_len, k_len]
            attention_scores = AC + BD + EF
            if self.attention_scale:
                attention_scores = attention_scores / math.sqrt(self.attention_head_size)

            #### compute attention probability
            if attention_mask is not None and attention_mask.any().item():
                # attention_mask = (1.0 - attention_mask) * -10000.0
                # attention_scores = attention_scores + attention_mask  # 这里修改了下,原有的-10000不够接近-inf
                attention_mask = (1.0 - attention_mask)
                attention_scores = attention_scores.float().masked_fill(attention_mask.bool(), -1e30).type_as(attention_mask)

            # [btz, n_head, q_len, k_len]
            attention_probs = F.softmax(attention_scores, dim=-1)
            attention_probs = self.dropout(attention_probs)
            context_layer = torch.matmul(attention_probs, w_head_v)  # [batch_size, num_attention_heads, query_len, attention_head_size]
            context_layer = context_layer.permute(0, 2, 1, 3).contiguous()
            new_context_layer_shape = context_layer.size()[:-2] + (self.hidden_size,)
            context_layer = context_layer.view(*new_context_layer_shape)

            # 是否返回attention scores
            if self.return_attention_scores:
                # 这里返回的attention_scores没有经过softmax, 可在外部进行归一化操作
                return self.o(context_layer), attention_scores
            else:
                return self.o(context_layer)


class AdaptiveEmbedding(nn.Module):
    '''Transformer_XL的自适应embedding, 实现不同区间使用不同的维度
    可以实现如高频词用比如1024或512维,低频词用256或64维, 再用Linear层project到相同的维数
    '''
    def __init__(self, vocab_size, embedding_size, hidden_size, cutoffs, div_val=1, sample_softmax=False, **kwargs):
        super().__init__()
        self.vocab_size = vocab_size
        self.embedding_size = embedding_size
        self.cutoffs = cutoffs + [vocab_size]
        self.div_val = div_val
        self.hidden_size = hidden_size
        self.emb_scale = hidden_size ** 0.5
        self.cutoff_ends = [0] + self.cutoffs

        self.emb_layers = nn.ModuleList()
        self.emb_projs = nn.ParameterList()
        if div_val == 1:
            self.emb_layers.append(nn.Embedding(vocab_size, embedding_size, sparse=sample_softmax > 0))
            if hidden_size != embedding_size:
                self.emb_projs.append(nn.Parameter(torch.FloatTensor(hidden_size, embedding_size)))
        else:
            for i in range(len(self.cutoffs)):
                l_idx, r_idx = self.cutoff_ends[i], self.cutoff_ends[i + 1]
                d_emb_i = embedding_size // (div_val ** i)
                self.emb_layers.append(nn.Embedding(r_idx - l_idx, d_emb_i))
                self.emb_projs.append(nn.Parameter(torch.FloatTensor(hidden_size, d_emb_i)))

    def forward(self, token_ids):
        if self.div_val == 1:  # 仅有一个embedding
            embed = self.emb_layers[0](token_ids)  # [btz, seq_len, embedding_size]
            if self.hidden_size != self.embedding_size:
                embed = nn.functional.linear(embed, self.emb_projs[0])
        else:
            param = next(self.parameters())
            inp_flat = token_ids.view(-1)
            emb_flat = torch.zeros([inp_flat.size(0), self.hidden_size], dtype=param.dtype, device=param.device)
            for i in range(len(self.cutoffs)):
                l_idx, r_idx = self.cutoff_ends[i], self.cutoff_ends[i + 1]

                mask_i = (inp_flat >= l_idx) & (inp_flat < r_idx)
                indices_i = mask_i.nonzero().squeeze()

                if indices_i.numel() == 0:
                    continue

                inp_i = inp_flat.index_select(0, indices_i) - l_idx
                emb_i = self.emb_layers[i](inp_i)
                emb_i = nn.functional.linear(emb_i, self.emb_projs[i])

                emb_flat.index_copy_(0, indices_i, emb_i)

            embed_shape = token_ids.size() + (self.hidden_size,)
            embed = emb_flat.view(embed_shape)

        embed.mul_(self.emb_scale)

        return embed


class Identity(nn.Module):
    def __init__(self, *args, **kwargs):
        super(Identity, self).__init__()

    def forward(self, *args):
        return args[0]


class XlnetPositionsEncoding(nn.Module):
    '''Xlnet, transformer_xl使用的相对位置编码
       和SinusoidalPositionEncoding区别是一个是间隔排列, 一个是前后排列
    '''
    def __init__(self, embedding_size):
        super().__init__()
        self.demb = embedding_size
        inv_freq = 1 / (10000 ** (torch.arange(0.0, embedding_size, 2.0) / embedding_size))
        self.register_buffer("inv_freq", inv_freq)

    def forward(self, pos_seq):
        sinusoid_inp = torch.ger(pos_seq, self.inv_freq)
        pos_emb = torch.cat([sinusoid_inp.sin(), sinusoid_inp.cos()], dim=-1)
        return pos_emb

class RelativePositionsEncoding(nn.Module):
    """nezha用的google相对位置编码
    来自论文:https://arxiv.org/abs/1803.02155
    """
    def __init__(self, qlen, klen, embedding_size, max_relative_position=127):
        super(RelativePositionsEncoding, self).__init__()
        # 生成相对位置矩阵
        vocab_size = max_relative_position * 2 + 1
        distance_mat = torch.arange(klen)[None, :] - torch.arange(qlen)[:, None]  # 列数-行数, [query_len, key_len]
        distance_mat_clipped = torch.clamp(distance_mat, -max_relative_position, max_relative_position)
        final_mat = distance_mat_clipped + max_relative_position

        # sinusoid_encoding编码的位置矩阵
        embeddings_table = get_sinusoid_encoding_table(vocab_size, embedding_size)

        # 实现方式1
        # flat_relative_positions_matrix = final_mat.view(-1)
        # one_hot_relative_positions_matrix = torch.nn.functional.one_hot(flat_relative_positions_matrix, num_classes=vocab_size).float()
        # position_embeddings = torch.matmul(one_hot_relative_positions_matrix, embeddings_table)
        # my_shape = list(final_mat.size())
        # my_shape.append(embedding_size)
        # position_embeddings = position_embeddings.view(my_shape)

        # 实现方式2
        # position_embeddings = take_along_dim(embeddings_table, final_mat.flatten().unsqueeze(1), dim=0)
        # position_embeddings = position_embeddings.reshape(*final_mat.shape, embeddings_table.shape[-1])  # [seq_len, seq_len, hdsz]
        # self.register_buffer('position_embeddings', position_embeddings)
        
        # 实现方式3
        position_embeddings = nn.Embedding.from_pretrained(embeddings_table, freeze=True)(final_mat)
        self.register_buffer('position_embeddings', position_embeddings)

    def forward(self, qlen, klen):
        return self.position_embeddings[:qlen, :klen, :]


class RelativePositionsEncodingT5(nn.Module):
    """Google T5的相对位置编码
    来自论文:https://arxiv.org/abs/1910.10683
    """
    def __init__(self, qlen, klen, relative_attention_num_buckets, is_decoder=False):
        super(RelativePositionsEncodingT5, self).__init__()
        # 生成相对位置矩阵
        context_position = torch.arange(qlen, dtype=torch.long)[:, None]
        memory_position = torch.arange(klen, dtype=torch.long)[None, :]
        relative_position = memory_position - context_position  # shape (qlen, klen)
        relative_position = self._relative_position_bucket(
            relative_position,  # shape (qlen, klen)
            bidirectional=not is_decoder,
            num_buckets=relative_attention_num_buckets,
        )
        self.register_buffer('relative_position', relative_position)

    def forward(self, qlen, klen):
        return self.relative_position[:qlen, :klen]

    @staticmethod
    def _relative_position_bucket(relative_position, bidirectional=True, num_buckets=32, max_distance=128):
        '''直接来源于transformer
        '''
        ret = 0
        n = -relative_position
        if bidirectional:
            num_buckets //= 2
            ret += (n < 0).to(torch.long) * num_buckets  # mtf.to_int32(mtf.less(n, 0)) * num_buckets
            n = torch.abs(n)
        else:
            n = torch.max(n, torch.zeros_like(n))
        # now n is in the range [0, inf)

        # half of the buckets are for exact increments in positions
        max_exact = num_buckets // 2
        is_small = n < max_exact

        # The other half of the buckets are for logarithmically bigger bins in positions up to max_distance
        val_if_large = max_exact + (
            torch.log(n.float() / max_exact) / math.log(max_distance / max_exact) * (num_buckets - max_exact)
        ).to(torch.long)
        val_if_large = torch.min(val_if_large, torch.full_like(val_if_large, num_buckets - 1))

        ret += torch.where(is_small, n, val_if_large)
        return ret

class SinusoidalPositionEncoding(nn.Module):
    """定义Sin-Cos位置Embedding
    """
    def __init__(self, max_position, embedding_size):
        super(SinusoidalPositionEncoding, self).__init__()
        self.position_embeddings = nn.Embedding.from_pretrained(get_sinusoid_encoding_table(max_position, embedding_size), freeze=True) 
    def forward(self, position_ids):
        return self.position_embeddings(position_ids)


class RoPEPositionEncoding(nn.Module):
    """旋转式位置编码: https://kexue.fm/archives/8265
    """
    def __init__(self, max_position, embedding_size):
        super(RoPEPositionEncoding, self).__init__()
        position_embeddings = get_sinusoid_encoding_table(max_position, embedding_size)  # [seq_len, hdsz]
        cos_position = position_embeddings[:, 1::2].repeat_interleave(2, dim=-1)
        sin_position = position_embeddings[:, ::2].repeat_interleave(2, dim=-1)
        # register_buffer是为了最外层model.to(device),不用内部指定device
        self.register_buffer('cos_position', cos_position)
        self.register_buffer('sin_position', sin_position)
    
    def forward(self, qw, seq_dim=-2):
        # 默认最后两个维度为[seq_len, hdsz]
        seq_len = qw.shape[seq_dim]
        qw2 = torch.stack([-qw[..., 1::2], qw[..., ::2]], dim=-1).reshape_as(qw)
        return qw * self.cos_position[:seq_len] + qw2 * self.sin_position[:seq_len]


class CRF(nn.Module):
    '''Conditional random field: https://github.com/lonePatient/BERT-NER-Pytorch/blob/master/models/layers/crf.py
    '''
    def __init__(self, num_tags: int, init_transitions: Optional[List[np.ndarray]] = None, freeze=False) -> None:
        if num_tags <= 0:
            raise ValueError(f'invalid number of tags: {num_tags}')
        super().__init__()
        self.num_tags = num_tags
        if (init_transitions is None) and (not freeze):
            self.start_transitions = nn.Parameter(torch.empty(num_tags))
            self.end_transitions = nn.Parameter(torch.empty(num_tags))
            self.transitions = nn.Parameter(torch.empty(num_tags, num_tags))
            nn.init.uniform_(self.start_transitions, -0.1, 0.1)
            nn.init.uniform_(self.end_transitions, -0.1, 0.1)
            nn.init.uniform_(self.transitions, -0.1, 0.1)
        elif init_transitions is not None:
            transitions = torch.tensor(init_transitions[0], dtype=torch.float)
            start_transitions = torch.tensor(init_transitions[1], dtype=torch.float)
            end_transitions = torch.tensor(init_transitions[2], dtype=torch.float)

            if not freeze:
                self.transitions = nn.Parameter(transitions)
                self.start_transitions = nn.Parameter(start_transitions)
                self.end_transitions = nn.Parameter(end_transitions)
            else:
                self.register_buffer('transitions', transitions)
                self.register_buffer('start_transitions', start_transitions)
                self.register_buffer('end_transitions', end_transitions)

    def __repr__(self) -> str:
        return f'{self.__class__.__name__}(num_tags={self.num_tags})'

    def forward(self, emissions: torch.Tensor, mask: torch.ByteTensor,
                tags: torch.LongTensor, reduction: str = 'mean') -> torch.Tensor:
        """Compute the conditional log likelihood of a sequence of tags given emission scores.
            emissions: [btz, seq_len, num_tags]
            mask: [btz, seq_len]
            tags: [btz, seq_len]
        """
        if reduction not in ('none', 'sum', 'mean', 'token_mean'):
            raise ValueError(f'invalid reduction: {reduction}')
        if mask.dtype != torch.uint8:
            mask = mask.byte()
        self._validate(emissions, tags=tags, mask=mask)

        # shape: (batch_size,)
        numerator = self._compute_score(emissions, tags, mask)
        # shape: (batch_size,)
        denominator = self._compute_normalizer(emissions, mask)
        # shape: (batch_size,)
        llh = denominator - numerator

        if reduction == 'none':
            return llh
        if reduction == 'sum':
            return llh.sum()
        if reduction == 'mean':
            return llh.mean()
        return llh.sum() / mask.float().sum()

    def decode(self, emissions: torch.Tensor, mask: Optional[torch.ByteTensor] = None,
               nbest: Optional[int] = None, pad_tag: Optional[int] = None) -> List[List[List[int]]]:
        """Find the most likely tag sequence using Viterbi algorithm.
        """
        if nbest is None:
            nbest = 1
        if mask is None:
            mask = torch.ones(emissions.shape[:2], dtype=torch.uint8, device=emissions.device)
        if mask.dtype != torch.uint8:
            mask = mask.byte()
        self._validate(emissions, mask=mask)

        best_path = self._viterbi_decode_nbest(emissions, mask, nbest, pad_tag)
        return best_path[0] if nbest == 1 else best_path

    def _validate(self, emissions: torch.Tensor, tags: Optional[torch.LongTensor] = None,
                  mask: Optional[torch.ByteTensor] = None) -> None:
        if emissions.dim() != 3:
            raise ValueError(f'emissions must have dimension of 3, got {emissions.dim()}')
        if emissions.size(2) != self.num_tags:
            raise ValueError(f'expected last dimension of emissions is {self.num_tags}, '
                             f'got {emissions.size(2)}')
        if tags is not None:
            if emissions.shape[:2] != tags.shape:
                raise ValueError('the first two dimensions of emissions and tags must match, '
                                 f'got {tuple(emissions.shape[:2])} and {tuple(tags.shape)}')
        if mask is not None:
            if emissions.shape[:2] != mask.shape:
                raise ValueError('the first two dimensions of emissions and mask must match, '
                    f'got {tuple(emissions.shape[:2])} and {tuple(mask.shape)}')
            no_empty_seq_bf = mask[:, 0].all()
            if not no_empty_seq_bf:
                raise ValueError('mask of the first timestep must all be on')

    def _compute_score(self, emissions: torch.Tensor, tags: torch.LongTensor, mask: torch.ByteTensor) -> torch.Tensor:
        # emissions: (batch_size, seq_length, num_tags)
        # tags: (batch_size, seq_length)
        # mask: (batch_size, seq_length)
        batch_size, seq_length = tags.shape
        mask = mask.float()

        # Start transition score and first emission
        # shape: (batch_size,)
        score = self.start_transitions[tags[:, 0]]
        score += emissions[torch.arange(batch_size), 0, tags[:, 0]]

        for i in range(1, seq_length):
            # Transition score to next tag, only added if next timestep is valid (mask == 1)
            # shape: (batch_size,)
            score += self.transitions[tags[:, i - 1], tags[:, i]] * mask[:, i]
            # Emission score for next tag, only added if next timestep is valid (mask == 1)
            # shape: (batch_size,)
            score += emissions[torch.arange(batch_size), i, tags[:, i]] * mask[:, i]

        # End transition score
        # shape: (batch_size,)
        seq_ends = mask.long().sum(dim=1) - 1
        # shape: (batch_size,)
        last_tags = tags[torch.arange(batch_size), seq_ends]
        # shape: (batch_size,)
        score += self.end_transitions[last_tags]

        return score

    def _compute_normalizer(self, emissions: torch.Tensor, mask: torch.ByteTensor) -> torch.Tensor:
        # emissions: (batch_size, seq_length, num_tags)
        # mask: (batch_size, seq_length)
        seq_length = emissions.size(1)

        # Start transition score and first emission; score has size of
        # (batch_size, num_tags) where for each batch, the j-th column stores
        # the score that the first timestep has tag j
        # shape: (batch_size, num_tags)
        score = self.start_transitions + emissions[:, 0]

        for i in range(1, seq_length):
            # Broadcast score for every possible next tag
            # shape: (batch_size, num_tags, 1)
            broadcast_score = score.unsqueeze(2)

            # Broadcast emission score for every possible current tag
            # shape: (batch_size, 1, num_tags)
            broadcast_emissions = emissions[:, i].unsqueeze(1)

            # Compute the score tensor of size (batch_size, num_tags, num_tags) where
            # for each sample, entry at row i and column j stores the sum of scores of all
            # possible tag sequences so far that end with transitioning from tag i to tag j
            # and emitting
            # shape: (batch_size, num_tags, num_tags)
            next_score = broadcast_score + self.transitions + broadcast_emissions

            # Sum over all possible current tags, but we're in score space, so a sum
            # becomes a log-sum-exp: for each sample, entry i stores the sum of scores of
            # all possible tag sequences so far, that end in tag i
            # shape: (batch_size, num_tags)
            next_score = torch.logsumexp(next_score, dim=1)

            # Set score to the next score if this timestep is valid (mask == 1)
            # shape: (batch_size, num_tags)
            score = torch.where(mask[:, i].unsqueeze(1).bool(), next_score, score)

        # End transition score
        # shape: (batch_size, num_tags)
        score += self.end_transitions

        # Sum (log-sum-exp) over all possible tags
        # shape: (batch_size,)
        return torch.logsumexp(score, dim=1)

    def _viterbi_decode_nbest(self, emissions: torch.FloatTensor, mask: torch.ByteTensor,
                              nbest: int, pad_tag: Optional[int] = None) -> List[List[List[int]]]:
        # emissions: (batch_size, seq_length, num_tags)
        # mask: (batch_size, seq_length)
        # return: (nbest, batch_size, seq_length)
        if pad_tag is None:
            pad_tag = 0

        device = emissions.device
        batch_size, seq_length = mask.shape

        # Start transition and first emission
        # shape: (batch_size, num_tags)
        score = self.start_transitions + emissions[:, 0]
        history_idx = torch.zeros((batch_size, seq_length, self.num_tags, nbest), dtype=torch.long, device=device)
        oor_idx = torch.zeros((batch_size, self.num_tags, nbest), dtype=torch.long, device=device)
        oor_tag = torch.full((batch_size, seq_length, nbest), pad_tag, dtype=torch.long, device=device)

        # - score is a tensor of size (batch_size, num_tags) where for every batch,
        #   value at column j stores the score of the best tag sequence so far that ends
        #   with tag j
        # - history_idx saves where the best tags candidate transitioned from; this is used
        #   when we trace back the best tag sequence
        # - oor_idx saves the best tags candidate transitioned from at the positions
        #   where mask is 0, i.e. out of range (oor)

        # Viterbi algorithm recursive case: we compute the score of the best tag sequence
        # for every possible next tag
        for i in range(1, seq_length):
            if i == 1:
                broadcast_score = score.unsqueeze(-1)
                broadcast_emission = emissions[:, i].unsqueeze(1)
                # shape: (batch_size, num_tags, num_tags)
                next_score = broadcast_score + self.transitions + broadcast_emission
            else:
                broadcast_score = score.unsqueeze(-1)
                broadcast_emission = emissions[:, i].unsqueeze(1).unsqueeze(2)
                # shape: (batch_size, num_tags, nbest, num_tags)
                next_score = broadcast_score + self.transitions.unsqueeze(1) + broadcast_emission

            # Find the top `nbest` maximum score over all possible current tag
            # shape: (batch_size, nbest, num_tags)
            next_score, indices = next_score.view(batch_size, -1, self.num_tags).topk(nbest, dim=1)

            if i == 1:
                score = score.unsqueeze(-1).expand(-1, -1, nbest)
                indices = indices * nbest

            # convert to shape: (batch_size, num_tags, nbest)
            next_score = next_score.transpose(2, 1)
            indices = indices.transpose(2, 1)

            # Set score to the next score if this timestep is valid (mask == 1)
            # and save the index that produces the next score
            # shape: (batch_size, num_tags, nbest)
            score = torch.where(mask[:, i].unsqueeze(-1).unsqueeze(-1).bool(), next_score, score)
            indices = torch.where(mask[:, i].unsqueeze(-1).unsqueeze(-1).bool(), indices, oor_idx)
            history_idx[:, i - 1] = indices

        # End transition score shape: (batch_size, num_tags, nbest)
        end_score = score + self.end_transitions.unsqueeze(-1)
        _, end_tag = end_score.view(batch_size, -1).topk(nbest, dim=1)

        # shape: (batch_size,)
        seq_ends = mask.long().sum(dim=1) - 1

        # insert the best tag at each sequence end (last position with mask == 1)
        history_idx.scatter_(1, seq_ends.view(-1, 1, 1, 1).expand(-1, 1, self.num_tags, nbest),
                             end_tag.view(-1, 1, 1, nbest).expand(-1, 1, self.num_tags, nbest))

        # The most probable path for each sequence
        best_tags_arr = torch.zeros((batch_size, seq_length, nbest), dtype=torch.long, device=device)
        best_tags = torch.arange(nbest, dtype=torch.long, device=device).view(1, -1).expand(batch_size, -1)
        for idx in range(seq_length - 1, -1, -1):
            best_tags = torch.gather(history_idx[:, idx].view(batch_size, -1), 1, best_tags)
            best_tags_arr[:, idx] = torch.div(best_tags.data.view(batch_size, -1), nbest, rounding_mode='floor')

        return torch.where(mask.unsqueeze(-1).bool(), best_tags_arr, oor_tag).permute(2, 0, 1)


class BERT_WHITENING():
    def __init__(self):
        self.kernel = None
        self.bias = None

    def compute_kernel_bias(self, sentence_vec):
        '''bert-whitening的torch实现
        '''
        vecs = torch.cat(sentence_vec, dim=0)
        self.bias = -vecs.mean(dim=0, keepdims=True)

        cov = torch.cov(vecs.T)  # 协方差
        u, s, vh = torch.linalg.svd(cov)
        W = torch.matmul(u, torch.diag(s**0.5))
        self.kernel = torch.linalg.inv(W.T)
    
    def save_whiten(self, path):
        whiten = {'kernel': self.kernel, 'bias': self.bias}
        torch.save(path, whiten)
        
    def load_whiten(self, path):
        whiten = torch.load(path)
        self.kernel = whiten['kernel']
        self.bias = whiten['bias']

    def transform_and_normalize(self, vecs):
        """应用变换,然后标准化
        """
        if not (self.kernel is None or self.bias is None):
            vecs = (vecs + self.bias).mm(self.kernel)
        return vecs / (vecs**2).sum(axis=1, keepdims=True)**0.5


class GlobalPointer(nn.Module):
    """全局指针模块
    将序列的每个(start, end)作为整体来进行判断
    参考:https://kexue.fm/archives/8373
    """
    def __init__(self, hidden_size, heads, head_size, RoPE=True, max_len=512, use_bias=True, tril_mask=True):
        super().__init__()
        self.heads = heads
        self.head_size = head_size
        self.RoPE = RoPE
        self.tril_mask = tril_mask
        self.RoPE = RoPE

        self.dense = nn.Linear(hidden_size, heads * head_size * 2, bias=use_bias)
        if self.RoPE:
            self.position_embedding = RoPEPositionEncoding(max_len, head_size)

    def forward(self, inputs, mask=None):
        ''' inputs: [..., hdsz]
            mask: [bez, seq_len], padding部分为0
        '''
        sequence_output = self.dense(inputs)  # [..., heads*head_size*2]
        sequence_output = torch.stack(torch.chunk(sequence_output, self.heads, dim=-1), dim=-2)  # [..., heads, head_size*2]
        qw, kw = sequence_output[..., :self.head_size], sequence_output[..., self.head_size:]  # [..., heads, head_size]

        # ROPE编码
        if self.RoPE:
            qw = self.position_embedding(qw)
            kw = self.position_embedding(kw)

        # 计算内积
        logits = torch.einsum('bmhd,bnhd->bhmn', qw, kw)  # [btz, heads, seq_len, seq_len]

        # 排除padding
        if mask is not None:
            attention_mask1 = 1 - mask.unsqueeze(1).unsqueeze(3)  # [btz, 1, seq_len, 1]
            attention_mask2 = 1 - mask.unsqueeze(1).unsqueeze(2)  # [btz, 1, 1, seq_len]
            logits = logits.masked_fill(attention_mask1.bool(), value=-float('inf'))
            logits = logits.masked_fill(attention_mask2.bool(), value=-float('inf'))

        # 排除下三角
        if self.tril_mask:
            logits = logits - torch.tril(torch.ones_like(logits), -1) * 1e12

        # scale返回
        return logits / self.head_size**0.5


class EfficientGlobalPointer(nn.Module):
    """更加参数高效的GlobalPointer
    参考:https://kexue.fm/archives/8877
    """
    def __init__(self, hidden_size, heads, head_size, RoPE=True, max_len=512, use_bias=True, tril_mask=True):
        super().__init__()
        self.heads = heads
        self.head_size = head_size
        self.RoPE = RoPE
        self.tril_mask = tril_mask
        self.RoPE = RoPE

        self.p_dense = nn.Linear(hidden_size, head_size * 2, bias=use_bias)
        self.q_dense = nn.Linear(head_size * 2, heads * 2, bias=use_bias)
        if self.RoPE:
            self.position_embedding = RoPEPositionEncoding(max_len, head_size)

    def forward(self, inputs, mask=None):
        ''' inputs: [..., hdsz]
            mask: [bez, seq_len], padding部分为0
        '''
        sequence_output = self.p_dense(inputs)  # [..., head_size*2]
        qw, kw = sequence_output[..., :self.head_size], sequence_output[..., self.head_size:]  # [..., head_size]

        # ROPE编码
        if self.RoPE:
            qw = self.position_embedding(qw)
            kw = self.position_embedding(kw)

        # 计算内积
        logits = torch.einsum('bmd,bnd->bmn', qw, kw) / self.head_size**0.5  # [btz, seq_len, seq_len], 是否是实体的打分
        bias_input = self.q_dense(sequence_output)  # [..., heads*2]
        bias = torch.stack(torch.chunk(bias_input, self.heads, dim=-1), dim=-2).transpose(1,2)  # [btz, heads, seq_len, 2]
        logits = logits.unsqueeze(1) + bias[..., :1] + bias[..., 1:].transpose(2, 3)  # [btz, heads, seq_len, seq_len]

        # 排除padding
        if mask is not None:
            attention_mask1 = 1 - mask.unsqueeze(1).unsqueeze(3)  # [btz, 1, seq_len, 1]
            attention_mask2 = 1 - mask.unsqueeze(1).unsqueeze(2)  # [btz, 1, 1, seq_len]
            logits = logits.masked_fill(attention_mask1.bool(), value=-float('inf'))
            logits = logits.masked_fill(attention_mask2.bool(), value=-float('inf'))

        # 排除下三角
        if self.tril_mask:
            logits = logits - torch.tril(torch.ones_like(logits), -1) * 1e12

        return logits


class TplinkerHandshakingKernel(nn.Module):
    '''Tplinker的HandshakingKernel实现
    '''
    def __init__(self, hidden_size, shaking_type, inner_enc_type=''):
        super().__init__()
        self.shaking_type = shaking_type
        if shaking_type == "cat":
            self.combine_fc = nn.Linear(hidden_size * 2, hidden_size)
        elif shaking_type == "cat_plus":
            self.combine_fc = nn.Linear(hidden_size * 3, hidden_size)
        elif shaking_type == "cln":
            self.tp_cln = LayerNorm(hidden_size, conditional_size=hidden_size)
        elif shaking_type == "cln_plus":
            self.tp_cln = LayerNorm(hidden_size, conditional_size=hidden_size)
            self.inner_context_cln = LayerNorm(hidden_size, conditional_size=hidden_size)
            
        self.inner_enc_type = inner_enc_type
        if inner_enc_type == "mix_pooling":
            self.lamtha = nn.Parameter(torch.rand(hidden_size))
        elif inner_enc_type == "lstm":
            self.inner_context_lstm = nn.LSTM(hidden_size, hidden_size, num_layers=1, bidirectional=False, batch_first=True)
        
        # 自行实现的用torch.gather方式来做,避免循环,目前只实现了cat方式
        # tag_ids = [(i, j) for i in range(maxlen) for j in range(maxlen) if j >= i]
        # gather_idx = torch.tensor(tag_ids, dtype=torch.long).flatten()[None, :, None]
        # self.register_buffer('gather_idx', gather_idx)

    def enc_inner_hiddens(self, seq_hiddens, inner_enc_type="lstm"):
        # seq_hiddens: (batch_size, seq_len, hidden_size)
        def pool(seqence, pooling_type):
            if pooling_type == "mean_pooling":
                pooling = torch.mean(seqence, dim = -2)
            elif pooling_type == "max_pooling":
                pooling, _ = torch.max(seqence, dim = -2)
            elif pooling_type == "mix_pooling":
                pooling = self.lamtha * torch.mean(seqence, dim = -2) + (1 - self.lamtha) * torch.max(seqence, dim = -2)[0]
            return pooling
        if "pooling" in inner_enc_type:
            inner_context = torch.stack([pool(seq_hiddens[:, :i+1, :], inner_enc_type) for i in range(seq_hiddens.size()[1])], dim = 1)
        elif inner_enc_type == "lstm":
            inner_context, _ = self.inner_context_lstm(seq_hiddens)
            
        return inner_context
    
    def forward(self, seq_hiddens):
        '''
        seq_hiddens: (batch_size, seq_len, hidden_size)
        return:
            shaking_hiddenss: (batch_size, (1 + seq_len) * seq_len / 2, hidden_size) (32, 5+4+3+2+1, 5)
        '''
        seq_len = seq_hiddens.size()[-2]
        shaking_hiddens_list = []
        for ind in range(seq_len):
            hidden_each_step = seq_hiddens[:, ind, :]
            visible_hiddens = seq_hiddens[:, ind:, :] # ind: only look back
            repeat_hiddens = hidden_each_step[:, None, :].repeat(1, seq_len - ind, 1)  
            
            if self.shaking_type == "cat":
                shaking_hiddens = torch.cat([repeat_hiddens, visible_hiddens], dim = -1)
                shaking_hiddens = torch.tanh(self.combine_fc(shaking_hiddens))
            elif self.shaking_type == "cat_plus":
                inner_context = self.enc_inner_hiddens(visible_hiddens, self.inner_enc_type)
                shaking_hiddens = torch.cat([repeat_hiddens, visible_hiddens, inner_context], dim = -1)
                shaking_hiddens = torch.tanh(self.combine_fc(shaking_hiddens))
            elif self.shaking_type == "cln":
                shaking_hiddens = self.tp_cln([visible_hiddens, repeat_hiddens])
            elif self.shaking_type == "cln_plus":
                inner_context = self.enc_inner_hiddens(visible_hiddens, self.inner_enc_type)
                shaking_hiddens = self.tp_cln([visible_hiddens, repeat_hiddens])
                shaking_hiddens = self.inner_context_cln([shaking_hiddens, inner_context])

            shaking_hiddens_list.append(shaking_hiddens)
        long_shaking_hiddens = torch.cat(shaking_hiddens_list, dim = 1)
        return long_shaking_hiddens

        # def handshaking_kernel(self, last_hidden_state):
        #     '''获取(0,0),(0,1),...,(99,99))对应的序列id
        #     '''
        #     btz, _, hdsz = last_hidden_state.shape
        #     gather_idx = self.gather_idx.repeat(btz, 1, hdsz)
        #     concat_hidden_states = torch.gather(last_hidden_state, dim=1, index=gather_idx)  # [btz, pair_len*2, hdsz]
        #     concat_hidden_states = concat_hidden_states.reshape(btz, -1, 2, hdsz)  # concat方式 [btz, pair_len, 2, hdsz]
        #     shaking_hiddens = torch.cat(torch.chunk(concat_hidden_states, chunks=2, dim=-2), dim=-1).squeeze(-2)  # [btz, pair_len, hdsz*2]
        #     return shaking_hiddens


class MixUp(nn.Module):
    '''mixup方法实现
        method: embed, encoder分别表示在embedding和encoder层面做mixup, None表示mix后续处理, hidden表示对隐含层做mixup
    '''
    def __init__(self, method='encoder', alpha=1.0, layer_mix=None):
        super().__init__()
        assert method in {'embed', 'encoder', 'hidden', None}
        self.method = method
        self.alpha = alpha
        self.perm_index = None
        self.lam = 0
        self.layer_mix = layer_mix  # 需要mix的隐含层index
    
    def get_perm(self, inputs):
        if isinstance(inputs, torch.Tensor):
            return inputs[self.perm_index]
        elif isinstance(inputs, (list, tuple)):
            return [inp[self.perm_index] if isinstance(inp, torch.Tensor) else inp for inp in inputs]
    
    def mix_up(self, output, output1):
        if isinstance(output, torch.Tensor):
            return self.lam * output + (1.0-self.lam) * output1
        elif isinstance(output, (list, tuple)):
            output_final = []
            for i in range(len(output)):
                if output[i] is None: # conditional_emb=None
                    output_final.append(output[i])
                elif (not output[i].requires_grad) and (output[i].dtype in {torch.long, torch.int}):
                    # 不是embedding形式的
                    output_final.append(torch.max(output[i], output1[i]))
                else:
                    output_final.append(self.lam * output[i] + (1.0-self.lam) * output1[i])
            return output_final
        else:
            raise ValueError('Illegal model output')

    def encode(self, model, inputs):
        batch_size = inputs[0].shape[0]
        device = inputs[0].device
        self.lam = np.random.beta(self.alpha, self.alpha)
        self.perm_index = torch.randperm(batch_size).to(device)

        if self.method is None:
            output = model(inputs)
            output1 = self.get_perm(output)
            return [output, output1]

        elif self.method == 'encoder':
            output = model(inputs)
            output1 = self.get_perm(output)
            output_final = self.mix_up(output, output1)

        elif self.method == 'embed':
            output = model.apply_embeddings(inputs)
            output1 = self.get_perm(output)
            output_final = self.mix_up(output, output1)
            # Main
            output_final = model.apply_main_layers(output_final)
            # Final
            output_final = model.apply_final_layers(output_final)
        
        elif self.method == 'hidden':
            if self.layer_mix is None:
                # 这里暂时只考虑encoderLayer, 不考虑decoderLayer和seq2seq模型结构
                try:
                    layer_mix = random.randint(0, len(model.encoderLayer))
                except:
                    warnings.warn('LayerMix random failded')
                    layer_mix = 0
            else:
                layer_mix = self.layer_mix
            
            def apply_on_layer_end(l_i, output):
                if l_i == layer_mix:
                    output1 = self.get_perm(output)
                    return self.mix_up(output, output1)
                else:
                    return output
            model.apply_on_layer_end = apply_on_layer_end
            output_final = model(inputs)
        return output_final
    
    def forward(self, criterion, y_pred, y_true):
        '''计算loss
        '''
        y_true1 = y_true[self.perm_index]
        return self.lam * criterion(y_pred, y_true) + (1 - self.lam) * criterion(y_pred, y_true1)