infer.cc 6.55 KB
Newer Older
xuxo's avatar
xuxo committed
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
// Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
//     http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.

#include "fastdeploy/vision.h"
#ifdef WIN32
const char sep = '\\';
#else
const char sep = '/';
#endif

void InitAndInfer(const std::string &det_model_dir,
                  const std::string &cls_model_dir,
                  const std::string &rec_model_dir,
                  const std::string &rec_label_file,
                  const std::string &image_file,
                  const fastdeploy::RuntimeOption &option) {
  auto det_model_file = det_model_dir + sep + "inference.pdmodel";
  auto det_params_file = det_model_dir + sep + "inference.pdiparams";

  auto cls_model_file = cls_model_dir + sep + "inference.pdmodel";
  auto cls_params_file = cls_model_dir + sep + "inference.pdiparams";

  auto rec_model_file = rec_model_dir + sep + "inference.pdmodel";
  auto rec_params_file = rec_model_dir + sep + "inference.pdiparams";

  auto det_option = option;
  auto cls_option = option;
  auto rec_option = option;

  // The cls and rec model can inference a batch of images now.
  // User could initialize the inference batch size and set them after create
  // PP-OCR model.
  int cls_batch_size = 1;
  int rec_batch_size = 6;

  // If use TRT backend, the dynamic shape will be set as follow.
  // We recommend that users set the length and height of the detection model to
  // a multiple of 32.
  // We also recommend that users set the Trt input shape as follow.
  det_option.SetTrtInputShape("x", {1, 3, 64, 64}, {1, 3, 640, 640},
                              {1, 3, 960, 960});
  cls_option.SetTrtInputShape("x", {1, 3, 48, 10}, {cls_batch_size, 3, 48, 320},
                              {cls_batch_size, 3, 48, 1024});
  rec_option.SetTrtInputShape("x", {1, 3, 48, 10}, {rec_batch_size, 3, 48, 320},
                              {rec_batch_size, 3, 48, 2304});

  // Users could save TRT cache file to disk as follow.
  // det_option.SetTrtCacheFile(det_model_dir + sep + "det_trt_cache.trt");
  // cls_option.SetTrtCacheFile(cls_model_dir + sep + "cls_trt_cache.trt");
  // rec_option.SetTrtCacheFile(rec_model_dir + sep + "rec_trt_cache.trt");

  auto det_model = fastdeploy::vision::ocr::DBDetector(
      det_model_file, det_params_file, det_option);
  auto cls_model = fastdeploy::vision::ocr::Classifier(
      cls_model_file, cls_params_file, cls_option);
  auto rec_model = fastdeploy::vision::ocr::Recognizer(
      rec_model_file, rec_params_file, rec_label_file, rec_option);

  assert(det_model.Initialized());
  assert(cls_model.Initialized());
  assert(rec_model.Initialized());

  // Parameters settings for pre and post processing of Det/Cls/Rec Models.
  // All parameters are set to default values.
  det_model.GetPreprocessor().SetMaxSideLen(960);
  det_model.GetPostprocessor().SetDetDBThresh(0.3);
  det_model.GetPostprocessor().SetDetDBBoxThresh(0.6);
  det_model.GetPostprocessor().SetDetDBUnclipRatio(1.5);
  det_model.GetPostprocessor().SetDetDBScoreMode("slow");
  det_model.GetPostprocessor().SetUseDilation(0);
  cls_model.GetPostprocessor().SetClsThresh(0.9);

  // The classification model is optional, so the PP-OCR can also be connected
  // in series as follows
  // auto ppocr_v3 = fastdeploy::pipeline::PPOCRv3(&det_model, &rec_model);
  auto ppocr_v3 =
      fastdeploy::pipeline::PPOCRv3(&det_model, &cls_model, &rec_model);

  // Set inference batch size for cls model and rec model, the value could be -1
  // and 1 to positive infinity.
  // When inference batch size is set to -1, it means that the inference batch
  // size
  // of the cls and rec models will be the same as the number of boxes detected
  // by the det model.
  ppocr_v3.SetClsBatchSize(cls_batch_size);
  ppocr_v3.SetRecBatchSize(rec_batch_size);

  if (!ppocr_v3.Initialized()) {
    std::cerr << "Failed to initialize PP-OCR." << std::endl;
    return;
  }

  auto im = cv::imread(image_file);
  auto im_bak = im.clone();

  fastdeploy::vision::OCRResult result;
  if (!ppocr_v3.Predict(&im, &result)) {
    std::cerr << "Failed to predict." << std::endl;
    return;
  }

  std::cout << result.Str() << std::endl;

  auto vis_im = fastdeploy::vision::VisOcr(im_bak, result);
  cv::imwrite("vis_result.jpg", vis_im);
  std::cout << "Visualized result saved in ./vis_result.jpg" << std::endl;
}

int main(int argc, char *argv[]) {
  if (argc < 7) {
    std::cout << "Usage: infer_demo path/to/det_model path/to/cls_model "
                 "path/to/rec_model path/to/rec_label_file path/to/image "
                 "run_option, "
                 "e.g ./infer_demo ./ch_PP-OCRv3_det_infer "
                 "./ch_ppocr_mobile_v2.0_cls_infer ./ch_PP-OCRv3_rec_infer "
                 "./ppocr_keys_v1.txt ./12.jpg 0"
              << std::endl;
    std::cout << "The data type of run_option is int, e.g. 0: run with paddle "
                 "inference on cpu;"
              << std::endl;
    return -1;
  }

  fastdeploy::RuntimeOption option;
  int flag = std::atoi(argv[6]);

  if (flag == 0) {
    option.UseCpu();
    option.UsePaddleBackend(); // Paddle Inference
  } else if (flag == 1) {
    option.UseCpu();
    option.UseOpenVINOBackend(); // OpenVINO
  } else if (flag == 2) {
    option.UseCpu();
    option.UseOrtBackend(); // ONNX Runtime
  } else if (flag == 3) {
    option.UseCpu();
    option.UseLiteBackend(); // Paddle Lite
  } else if (flag == 4) {
    option.UseGpu();
    option.UsePaddleBackend(); // Paddle Inference
  } else if (flag == 5) {
    option.UseGpu();
    option.UsePaddleInferBackend();
    option.paddle_infer_option.collect_trt_shape = true;
    option.paddle_infer_option.enable_trt = true; // Paddle-TensorRT
  } else if (flag == 6) {
    option.UseGpu();
    option.UseOrtBackend(); // ONNX Runtime
  } else if (flag == 7) {
    option.UseGpu();
    option.UseTrtBackend(); // TensorRT
  }

  std::string det_model_dir = argv[1];
  std::string cls_model_dir = argv[2];
  std::string rec_model_dir = argv[3];
  std::string rec_label_file = argv[4];
  std::string test_image = argv[5];
  InitAndInfer(det_model_dir, cls_model_dir, rec_model_dir, rec_label_file,
               test_image, option);
  return 0;
}