paddleocr.cpp 6.93 KB
Newer Older
xuxo's avatar
xuxo committed
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
// Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
//     http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.

#include <include/args.h>
#include <include/paddleocr.h>

#include "auto_log/autolog.h"

namespace PaddleOCR {

PPOCR::PPOCR() {
  if (FLAGS_det) {
    this->detector_ = new DBDetector(
        FLAGS_det_model_dir, FLAGS_use_gpu, FLAGS_gpu_id, FLAGS_gpu_mem,
        FLAGS_cpu_threads, FLAGS_enable_mkldnn, FLAGS_limit_type,
        FLAGS_limit_side_len, FLAGS_det_db_thresh, FLAGS_det_db_box_thresh,
        FLAGS_det_db_unclip_ratio, FLAGS_det_db_score_mode, FLAGS_use_dilation,
        FLAGS_use_tensorrt, FLAGS_precision);
  }

  if (FLAGS_cls && FLAGS_use_angle_cls) {
    this->classifier_ = new Classifier(
        FLAGS_cls_model_dir, FLAGS_use_gpu, FLAGS_gpu_id, FLAGS_gpu_mem,
        FLAGS_cpu_threads, FLAGS_enable_mkldnn, FLAGS_cls_thresh,
        FLAGS_use_tensorrt, FLAGS_precision, FLAGS_cls_batch_num);
  }
  if (FLAGS_rec) {
    this->recognizer_ = new CRNNRecognizer(
        FLAGS_rec_model_dir, FLAGS_use_gpu, FLAGS_gpu_id, FLAGS_gpu_mem,
        FLAGS_cpu_threads, FLAGS_enable_mkldnn, FLAGS_rec_char_dict_path,
        FLAGS_use_tensorrt, FLAGS_precision, FLAGS_rec_batch_num,
        FLAGS_rec_img_h, FLAGS_rec_img_w);
  }
};

std::vector<std::vector<OCRPredictResult>>
PPOCR::ocr(std::vector<cv::Mat> img_list, bool det, bool rec, bool cls) {
  std::vector<std::vector<OCRPredictResult>> ocr_results;

  if (!det) {
    std::vector<OCRPredictResult> ocr_result;
    ocr_result.resize(img_list.size());
    if (cls && this->classifier_ != nullptr) {
      this->cls(img_list, ocr_result);
      for (int i = 0; i < img_list.size(); i++) {
        if (ocr_result[i].cls_label % 2 == 1 &&
            ocr_result[i].cls_score > this->classifier_->cls_thresh) {
          cv::rotate(img_list[i], img_list[i], 1);
        }
      }
    }
    if (rec) {
      this->rec(img_list, ocr_result);
    }
    for (int i = 0; i < ocr_result.size(); ++i) {
      std::vector<OCRPredictResult> ocr_result_tmp;
      ocr_result_tmp.push_back(ocr_result[i]);
      ocr_results.push_back(ocr_result_tmp);
    }
  } else {
    for (int i = 0; i < img_list.size(); ++i) {
      std::vector<OCRPredictResult> ocr_result =
          this->ocr(img_list[i], true, rec, cls);
      ocr_results.push_back(ocr_result);
    }
  }
  return ocr_results;
}

std::vector<OCRPredictResult> PPOCR::ocr(cv::Mat img, bool det, bool rec,
                                         bool cls) {

  std::vector<OCRPredictResult> ocr_result;
  // det
  this->det(img, ocr_result);
  // crop image
  std::vector<cv::Mat> img_list;
  for (int j = 0; j < ocr_result.size(); j++) {
    cv::Mat crop_img;
    crop_img = Utility::GetRotateCropImage(img, ocr_result[j].box);
    img_list.push_back(crop_img);
  }
  // cls
  if (cls && this->classifier_ != nullptr) {
    this->cls(img_list, ocr_result);
    for (int i = 0; i < img_list.size(); i++) {
      if (ocr_result[i].cls_label % 2 == 1 &&
          ocr_result[i].cls_score > this->classifier_->cls_thresh) {
        cv::rotate(img_list[i], img_list[i], 1);
      }
    }
  }
  // rec
  if (rec) {
    this->rec(img_list, ocr_result);
  }
  return ocr_result;
}

void PPOCR::det(cv::Mat img, std::vector<OCRPredictResult> &ocr_results) {
  std::vector<std::vector<std::vector<int>>> boxes;
  std::vector<double> det_times;

  this->detector_->Run(img, boxes, det_times);

  for (int i = 0; i < boxes.size(); i++) {
    OCRPredictResult res;
    res.box = boxes[i];
    ocr_results.push_back(res);
  }
  // sort boex from top to bottom, from left to right
  Utility::sorted_boxes(ocr_results);
  this->time_info_det[0] += det_times[0];
  this->time_info_det[1] += det_times[1];
  this->time_info_det[2] += det_times[2];
}

void PPOCR::rec(std::vector<cv::Mat> img_list,
                std::vector<OCRPredictResult> &ocr_results) {
  std::vector<std::string> rec_texts(img_list.size(), "");
  std::vector<float> rec_text_scores(img_list.size(), 0);
  std::vector<double> rec_times;
  this->recognizer_->Run(img_list, rec_texts, rec_text_scores, rec_times);
  // output rec results
  for (int i = 0; i < rec_texts.size(); i++) {
    ocr_results[i].text = rec_texts[i];
    ocr_results[i].score = rec_text_scores[i];
  }
  this->time_info_rec[0] += rec_times[0];
  this->time_info_rec[1] += rec_times[1];
  this->time_info_rec[2] += rec_times[2];
}

void PPOCR::cls(std::vector<cv::Mat> img_list,
                std::vector<OCRPredictResult> &ocr_results) {
  std::vector<int> cls_labels(img_list.size(), 0);
  std::vector<float> cls_scores(img_list.size(), 0);
  std::vector<double> cls_times;
  this->classifier_->Run(img_list, cls_labels, cls_scores, cls_times);
  // output cls results
  for (int i = 0; i < cls_labels.size(); i++) {
    ocr_results[i].cls_label = cls_labels[i];
    ocr_results[i].cls_score = cls_scores[i];
  }
  this->time_info_cls[0] += cls_times[0];
  this->time_info_cls[1] += cls_times[1];
  this->time_info_cls[2] += cls_times[2];
}

void PPOCR::reset_timer() {
  this->time_info_det = {0, 0, 0};
  this->time_info_rec = {0, 0, 0};
  this->time_info_cls = {0, 0, 0};
}

void PPOCR::benchmark_log(int img_num) {
  if (this->time_info_det[0] + this->time_info_det[1] + this->time_info_det[2] >
      0) {
    AutoLogger autolog_det("ocr_det", FLAGS_use_gpu, FLAGS_use_tensorrt,
                           FLAGS_enable_mkldnn, FLAGS_cpu_threads, 1, "dynamic",
                           FLAGS_precision, this->time_info_det, img_num);
    autolog_det.report();
  }
  if (this->time_info_rec[0] + this->time_info_rec[1] + this->time_info_rec[2] >
      0) {
    AutoLogger autolog_rec("ocr_rec", FLAGS_use_gpu, FLAGS_use_tensorrt,
                           FLAGS_enable_mkldnn, FLAGS_cpu_threads,
                           FLAGS_rec_batch_num, "dynamic", FLAGS_precision,
                           this->time_info_rec, img_num);
    autolog_rec.report();
  }
  if (this->time_info_cls[0] + this->time_info_cls[1] + this->time_info_cls[2] >
      0) {
    AutoLogger autolog_cls("ocr_cls", FLAGS_use_gpu, FLAGS_use_tensorrt,
                           FLAGS_enable_mkldnn, FLAGS_cpu_threads,
                           FLAGS_cls_batch_num, "dynamic", FLAGS_precision,
                           this->time_info_cls, img_num);
    autolog_cls.report();
  }
}

PPOCR::~PPOCR() {
  if (this->detector_ != nullptr) {
    delete this->detector_;
  }
  if (this->classifier_ != nullptr) {
    delete this->classifier_;
  }
  if (this->recognizer_ != nullptr) {
    delete this->recognizer_;
  }
};

} // namespace PaddleOCR