snippets.py 56 KB
Newer Older
xuxo's avatar
xuxo committed
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
#! -*- coding: utf-8 -*-
# 其他代码合

import unicodedata
import six
import numpy as np
import re
import torch
from torch.nn.utils.rnn import pad_sequence
import time
import sys
import collections
import torch.nn as nn
from torch.utils.data import Dataset, IterableDataset
import math
import gc
import inspect
import json
import torch.nn.functional as F
import random
from datetime import datetime
from typing import List, Tuple, Dict, Union, Optional
import warnings
import os


is_py2 = six.PY2

if not is_py2:
    basestring = str

def take_along_dim(input_tensor, indices, dim=None):
    '''兼容部分低版本pytorch没有torch.take_along_dim
    '''
    if torch.__version__ >= '1.9.0':
        return torch.take_along_dim(input_tensor, indices, dim)
    else:
        # 该逻辑仅在少量数据上测试,如有bug,欢迎反馈
        if dim is None:
            res = input_tensor.flatten()[indices]
        else:
            res = np.take_along_axis(input_tensor.cpu().numpy(), indices.cpu().numpy(), axis=dim)
            res = torch.from_numpy(res).to(input_tensor.device)
        # assert res.equal(torch.take_along_dim(input_tensor, indices, dim))
        return res

def is_string(s):
    """判断是否是字符串
    """
    return isinstance(s, basestring)
    
def truncate_sequences(maxlen, indices, *sequences):
    """截断总长度至不超过maxlen
    """
    sequences = [s for s in sequences if s]
    if not isinstance(indices, (list, tuple)):
        indices = [indices] * len(sequences)

    while True:
        lengths = [len(s) for s in sequences]
        if sum(lengths) > maxlen:
            i = np.argmax(lengths)
            sequences[i].pop(indices[i])
        else:
            return sequences

def text_segmentate(text, maxlen, seps='\n', strips=None, truncate=True):
    """将文本按照标点符号划分为若干个短句
       truncate: True表示标点符号切分后仍然超长时, 按照maxlen硬截断分成若干个短句
    """
    text = text.strip().strip(strips)
    if seps and len(text) > maxlen:
        pieces = text.split(seps[0])
        text, texts = '', []
        for i, p in enumerate(pieces):
            if text and p and len(text) + len(p) > maxlen - 1:
                texts.extend(text_segmentate(text, maxlen, seps[1:], strips, truncate))
                text = ''
            if i + 1 == len(pieces):
                text = text + p
            else:
                text = text + p + seps[0]
        if text:
            texts.extend(text_segmentate(text, maxlen, seps[1:], strips, truncate))
        return texts
    elif truncate and (not seps) and (len(text) > maxlen):
        # 标点符号用完,仍然超长,且设置了truncate=True
        return [text[i*maxlen:(i+1)*maxlen] for i in range(0, int(np.ceil(len(text)/maxlen)))]
    else:
        return [text]

def merge_segmentate(sequences, maxlen, sep=''):
    '''把m个句子合并成不超过maxlen的n个句子, 主要用途是合并碎句子
    '''
    sequences_new = []
    text = ''
    for t in sequences:
        if text and len(text + sep + t) <= maxlen:
            text = text + sep + t
        elif text:
            sequences_new.append(text)
            text = t
        elif len(t) < maxlen: # text为空
            text = t
        else:
            sequences_new.append(t)
            text = ''
    if text:
        sequences_new.append(text)
    return sequences_new

def text_augmentation(texts, noise_dict=None, noise_len=0, noise_p=0.0, skip_words=None, strategy='random', allow_dup=True):
    '''简单的EDA策略, 增删改
    texts: 需要增强的文本/文本list
    noise_dict: 噪音数据, 元素为str的list, tuple, set
    noise_len: 噪音长度, 优先试用
    noise_p: 噪音比例
    skip_words: 跳过的短语, string/list
    strategy: 修改的策略, 包含增insert, 删delete, 改replace, 随机random
    allow_dup: 是否允许同一个位置多次EDA
    '''
    def insert(text, insert_idx, noise_dict):
        text = list(text)
        for i in insert_idx:
            text[i] = text[i] + random.choice(noise_dict)
        return ''.join(text)

    def delete(text, delete_idx):
        text = list(text)
        for i in delete_idx:
            text[i] = ''
        return ''.join(text)

    def replace(text, replace_idx, noise_dict):
        text = list(text)
        for i in replace_idx:
            text[i] = random.choice(noise_dict)
        return ''.join(text)

    def search(pattern, sequence, keep_last=True):
        """从sequence中寻找子串pattern, 返回符合pattern的id集合
        """
        n = len(pattern)
        pattern_idx_set = set()
        for i in range(len(sequence)):
            if sequence[i:i + n] == pattern:
                pattern_idx_set = pattern_idx_set.union(set(range(i, i+n))) if keep_last else pattern_idx_set.union(set(range(i, i+n-1)))
        return pattern_idx_set

    if (noise_len==0) and (noise_p==0):
        return texts

    assert strategy in {'insert', 'delete', 'replace', 'random'}, 'EDA strategy only support insert, delete, replace, random'

    if isinstance(texts, str):
        texts = [texts]

    if skip_words is None:
        skip_words = []
    elif isinstance(skip_words, str):
        skip_words = [skip_words]

    for id, text in enumerate(texts):
        sel_len = noise_len if noise_len > 0 else int(len(text)*noise_p) # 噪声长度
        skip_idx = set()  # 不能修改的idx区间
        for item in skip_words:
            # insert时最后一位允许插入
            skip_idx = skip_idx.union(search(item, text, strategy!='insert'))

        sel_idxs = [i for i in range(len(text)) if i not in skip_idx]  # 可供选择的idx区间
        sel_len = sel_len if allow_dup else min(sel_len, len(sel_idxs))  # 无重复抽样需要抽样数小于总样本
        if (sel_len == 0) or (len(sel_idxs) == 0):  # 如果不可采样则跳过
            continue
        sel_idx = np.random.choice(sel_idxs, sel_len, replace=allow_dup)
        if strategy == 'insert':
            texts[id] = insert(text, sel_idx, noise_dict)
        elif strategy == 'delete':
            texts[id] = delete(text, sel_idx)
        elif strategy == 'replace':
            texts[id] = replace(text, sel_idx, noise_dict)
        elif strategy == 'random':
            if random.random() < 0.333:
                skip_idx = set()  # 不能修改的idx区间
                for item in skip_words:
                    # insert时最后一位允许插入
                    skip_idx = skip_idx.union(search(item, text, keep_last=False))
                texts[id] = insert(text, sel_idx, noise_dict)
            elif random.random() < 0.667:
                texts[id] = delete(text, sel_idx)
            else:
                texts[id] = replace(text, sel_idx, noise_dict)
    return texts if len(texts) > 1 else texts[0]

def lowercase_and_normalize(text, never_split=()):
    """转小写,并进行简单的标准化
    """
    if is_py2:
        text = unicode(text)
    
    # convert non-special tokens to lowercase
    escaped_special_toks = [re.escape(s_tok) for s_tok in never_split]
    pattern = r"(" + r"|".join(escaped_special_toks) + r")|" + r"(.+?)"
    text = re.sub(pattern, lambda m: m.groups()[0] or m.groups()[1].lower(), text)

    # text = text.lower()
    text = unicodedata.normalize('NFD', text)
    text = ''.join([ch for ch in text if unicodedata.category(ch) != 'Mn'])
    return text

def sequence_padding(inputs, length=None, value=0, seq_dims=1, mode='post'):
    """将序列padding到同一长度
    """
    if isinstance(inputs[0], (np.ndarray, list)):
        if length is None:
            length = np.max([np.shape(x)[:seq_dims] for x in inputs], axis=0)
        elif not hasattr(length, '__getitem__'):
            length = [length]

        slices = [np.s_[:length[i]] for i in range(seq_dims)]
        slices = tuple(slices) if len(slices) > 1 else slices[0]
        pad_width = [(0, 0) for _ in np.shape(inputs[0])]

        outputs = []
        for x in inputs:
            x = x[slices]
            for i in range(seq_dims):
                if mode == 'post':
                    pad_width[i] = (0, length[i] - np.shape(x)[i])
                elif mode == 'pre':
                    pad_width[i] = (length[i] - np.shape(x)[i], 0)
                else:
                    raise ValueError('"mode" argument must be "post" or "pre".')
            x = np.pad(x, pad_width, 'constant', constant_values=value)
            outputs.append(x)

        return np.array(outputs)
    
    elif isinstance(inputs[0], torch.Tensor):
        assert mode == 'post', '"mode" argument must be "post" when element is torch.Tensor'
        if length is not None:
            inputs = [i[:length] for i in inputs]
        return pad_sequence(inputs, padding_value=value, batch_first=True)
    else:
        raise ValueError('"input" argument must be tensor/list/ndarray.')


def insert_arguments(**arguments):
    """装饰器,为类方法增加参数(主要用于类的__init__方法)
    """
    def actual_decorator(func):
        def new_func(self, *args, **kwargs):
            for k, v in arguments.items():
                if k in kwargs:
                    v = kwargs.pop(k)
                setattr(self, k, v)
            return func(self, *args, **kwargs)

        return new_func

    return actual_decorator


def delete_arguments(*arguments):
    """装饰器,为类方法删除参数(主要用于类的__init__方法)
    """
    def actual_decorator(func):
        def new_func(self, *args, **kwargs):
            for k in arguments:
                if k in kwargs:
                    raise TypeError(
                        '%s got an unexpected keyword argument \'%s\'' %
                        (self.__class__.__name__, k)
                    )
            return func(self, *args, **kwargs)

        return new_func

    return actual_decorator


class Progbar(object):
    """Displays a progress bar.

    # Arguments
        target: Total number of steps expected, None if unknown.
        width: Progress bar width on screen.
        verbose: Verbosity mode, 0 (silent), 1 (verbose), 2 (semi-verbose)
        stateful_metrics: Iterable of string names of metrics that
            should *not* be averaged over time. Metrics in this list
            will be displayed as-is. All others will be averaged
            by the progbar before display.
        interval: Minimum visual progress update interval (in seconds).
    """

    def __init__(self, target, width=30, verbose=1, interval=0.05, stateful_metrics=None):
        self.target = target
        self.width = width
        self.verbose = verbose
        self.interval = interval
        if stateful_metrics:
            self.stateful_metrics = set(stateful_metrics)
        else:
            self.stateful_metrics = set()

        self._dynamic_display = ((hasattr(sys.stdout, 'isatty') and
                                  sys.stdout.isatty()) or
                                 'ipykernel' in sys.modules)
        self._total_width = 0
        self._seen_so_far = 0
        self._values = collections.OrderedDict()
        self._start = time.time()
        self._last_update = 0

    def update(self, current, values=None):
        """Updates the progress bar.

        # Arguments
            current: Index of current step.
            values: List of tuples:
                `(name, value_for_last_step)`.
                If `name` is in `stateful_metrics`,
                `value_for_last_step` will be displayed as-is.
                Else, an average of the metric over time will be displayed.
        """
        values = values or []
        for k, v in values:
            if k not in self.stateful_metrics:
                if k not in self._values:
                    self._values[k] = [v * (current - self._seen_so_far),
                                       current - self._seen_so_far]
                else:
                    self._values[k][0] += v * (current - self._seen_so_far)
                    self._values[k][1] += (current - self._seen_so_far)
            else:
                # Stateful metrics output a numeric value.  This representation
                # means "take an average from a single value" but keeps the
                # numeric formatting.
                self._values[k] = [v, 1]
        self._seen_so_far = current

        now = time.time()
        info = ' - %.0fs' % (now - self._start)
        if self.verbose == 1:
            if (now - self._last_update < self.interval and
                    self.target is not None and current < self.target):
                return

            prev_total_width = self._total_width
            if self._dynamic_display:
                sys.stdout.write('\b' * prev_total_width)
                sys.stdout.write('\r')
            else:
                sys.stdout.write('\n')

            if self.target is not None:
                numdigits = int(np.floor(np.log10(self.target))) + 1
                barstr = '%%%dd/%d [' % (numdigits, self.target)
                bar = barstr % current
                prog = float(current) / self.target
                prog_width = int(self.width * prog)
                if prog_width > 0:
                    bar += ('=' * (prog_width - 1))
                    if current < self.target:
                        bar += '>'
                    else:
                        bar += '='
                bar += ('.' * (self.width - prog_width))
                bar += ']'
            else:
                bar = '%7d/Unknown' % current

            self._total_width = len(bar)
            sys.stdout.write(bar)

            if current:
                time_per_unit = (now - self._start) / current
            else:
                time_per_unit = 0
            if self.target is not None and current < self.target:
                eta = time_per_unit * (self.target - current)
                if eta > 3600:
                    eta_format = ('%d:%02d:%02d' %
                                  (eta // 3600, (eta % 3600) // 60, eta % 60))
                elif eta > 60:
                    eta_format = '%d:%02d' % (eta // 60, eta % 60)
                else:
                    eta_format = '%ds' % eta

                info = ' - ETA: %s' % eta_format
            else:
                if time_per_unit >= 1:
                    info += ' %.0fs/step' % time_per_unit
                elif time_per_unit >= 1e-3:
                    info += ' %.0fms/step' % (time_per_unit * 1e3)
                else:
                    info += ' %.0fus/step' % (time_per_unit * 1e6)

            for k in self._values:
                info += ' - %s:' % k
                if isinstance(self._values[k], list):
                    avg = np.mean(
                        self._values[k][0] / max(1, self._values[k][1]))
                    if abs(avg) > 1e-3:
                        info += ' %.4f' % avg
                    else:
                        info += ' %.4e' % avg
                else:
                    info += ' %s' % self._values[k]

            self._total_width += len(info)
            if prev_total_width > self._total_width:
                info += (' ' * (prev_total_width - self._total_width))

            if self.target is not None and current >= self.target:
                info += '\n'

            sys.stdout.write(info)
            sys.stdout.flush()

        elif self.verbose == 2:
            if self.target is None or current >= self.target:
                for k in self._values:
                    info += ' - %s:' % k
                    avg = np.mean(
                        self._values[k][0] / max(1, self._values[k][1]))
                    if avg > 1e-3:
                        info += ' %.4f' % avg
                    else:
                        info += ' %.4e' % avg
                info += '\n'

                sys.stdout.write(info)
                sys.stdout.flush()

        self._last_update = now

    def add(self, n, values=None):
        self.update(self._seen_so_far + n, values)


class Callback(object):
    '''Callback基类
    '''
    def __init__(self):
        pass
    def on_train_begin(self, logs=None):
        pass
    def on_train_end(self, logs=None):
        pass
    def on_epoch_begin(self, global_step, epoch, logs=None):
        pass
    def on_epoch_end(self, global_step, epoch, logs=None):
        pass
    def on_batch_begin(self, global_step, local_step, logs=None):
        pass
    def on_batch_end(self, global_step, local_step, logs=None):
        pass
    def on_dataloader_end(self, logs=None):
        pass


class ProgbarLogger(Callback):
    """Callback that prints metrics to stdout.

    # Arguments
        count_mode: One of "steps" or "samples".
            Whether the progress bar should
            count samples seen or steps (batches) seen.
        stateful_metrics: Iterable of string names of metrics that
            should *not* be averaged over an epoch.
            Metrics in this list will be logged as-is.
            All others will be averaged over time (e.g. loss, etc).

    # Raises
        ValueError: In case of invalid `count_mode`.
    """

    def __init__(self, epochs, steps, metrics, stateful_metrics=None, verbose=1):
        super(ProgbarLogger, self).__init__()
        if stateful_metrics:
            self.stateful_metrics = set(stateful_metrics)
        else:
            self.stateful_metrics = set()
        self.params = {'epochs': epochs, 'steps': steps, 'verbose': verbose, 'metrics': metrics}
        self.verbose = verbose
        self.epochs = epochs

    def add_metrics(self, metrics, stateful_metrics=None, add_position=None):
        if add_position is None:
            add_position = len(self.params['metrics'])
        metrics = [metrics] if isinstance(metrics, str) else metrics
        if stateful_metrics:
            stateful_metrics = [stateful_metrics] if isinstance(stateful_metrics, str) else stateful_metrics
            self.stateful_metrics.update(set(stateful_metrics))
            self.progbar.stateful_metrics.update(set(stateful_metrics))

        add_metrics = []
        for metric in metrics:
            if metric not in self.params['metrics']:
                add_metrics.append(metric)
        self.params['metrics'] = self.params['metrics'][:add_position] + add_metrics + self.params['metrics'][add_position:]

    def on_train_begin(self, logs=None):
        if self.verbose:
            print('Start Training'.center(40, '='))

    def on_epoch_begin(self, global_step=None, epoch=None, logs=None):
        if self.verbose:
            time_start = datetime.now().strftime('%Y-%m-%d %H:%M:%S')
            print('%s - Epoch: %d/%d' % (time_start, epoch + 1, self.epochs))
            self.target = self.params['steps']
            self.progbar = Progbar(target=self.target, verbose=self.verbose, stateful_metrics=self.stateful_metrics)
        self.seen = 0

    def on_batch_begin(self, global_step=None, local_step=None, logs=None):
        if self.seen < self.target:
            self.log_values = []

    def on_batch_end(self, global_step=None, local_step=None, logs=None):
        logs = logs or {}
        self.seen += 1
        for k in self.params['metrics']:
            if k in logs:
                self.log_values.append((k, logs[k]))

        # Skip progbar update for the last batch;
        # will be handled by on_epoch_end.
        if self.verbose and self.seen < self.target:
            self.progbar.update(self.seen, self.log_values)

    def on_epoch_end(self, global_step=None, epoch=None, logs=None):
        logs = logs or {}
        for k in self.params['metrics']:
            if k in logs:
                self.log_values.append((k, logs[k]))
        if self.verbose:
            self.progbar.update(self.seen, self.log_values)
    
    def on_train_end(self, logs=None):
        if self.verbose:
            print('Finish Training'.center(40, '='))


class EarlyStopping(Callback):
    '''Stop training策略, 从keras中移植
    '''
    def __init__(self, monitor='loss', min_delta=0, patience=0, verbose=0, mode='auto', baseline=None):
        super(EarlyStopping, self).__init__()

        self.monitor = monitor
        self.baseline = baseline
        self.patience = patience
        self.verbose = verbose
        self.min_delta = min_delta
        self.wait = 0
        self.stopped_epoch = 0

        if mode not in ['auto', 'min', 'max']:
            warnings.warn('EarlyStopping mode %s is unknown, fallback to auto mode.' % mode, RuntimeWarning)
            mode = 'auto'

        if mode == 'min':
            self.monitor_op = np.less
        elif mode == 'max':
            self.monitor_op = np.greater
        else:
            self.monitor_op = np.greater if 'acc' in self.monitor else np.less
        self.min_delta = self.min_delta if self.monitor_op == np.greater else -self.min_delta

    def on_train_begin(self, logs=None):
        # Allow instances to be re-used
        self.wait = 0
        self.stopped_epoch = 0
        if self.baseline is not None:
            self.best = self.baseline
        else:
            self.best = np.Inf if self.monitor_op == np.less else -np.Inf

    def on_epoch_end(self, steps, epoch, logs=None):
        current = self.get_monitor_value(logs)
        if current is None:
            return

        if self.monitor_op(current - self.min_delta, self.best):
            self.best = current
            self.wait = 0
        else:
            self.wait += 1
            if self.wait >= self.patience:
                self.stopped_epoch = epoch

    def on_train_end(self, logs=None):
        if self.stopped_epoch > 0 and self.verbose > 0:
            print(f'Epoch {self.stopped_epoch+1}: early stopping\n')

    def get_monitor_value(self, logs):
        monitor_value = logs.get(self.monitor)
        if monitor_value is None:
            warnings.warn('Early stopping conditioned on metric `%s` '
                'which is not available. Available metrics are: %s' %
                (self.monitor, ','.join(list(logs.keys()))), RuntimeWarning)
        return monitor_value


class Logger(Callback):
    '''默认logging
    对于valid/dev和test的日志需要在evaluate之后对log进行赋值,如log['dev_f1']=f1,并在Evaluator之后调用
    若每隔一定steps对验证集评估,则Logger的interval设置成和Evaluater一致或者约数,保证日志能记录到
    '''
    def __init__(self, filename, interval=10, verbosity=1, name=None):
        super(Logger, self).__init__()
        self.interval = interval

        import logging
        level_dict = {0: logging.DEBUG, 1: logging.INFO, 2: logging.WARNING}
        formatter = logging.Formatter("[%(asctime)s][%(filename)s][line:%(lineno)d][%(levelname)s] %(message)s")
        self.logger = logging.getLogger(name)
        self.logger.setLevel(level_dict[verbosity])
        fh = logging.FileHandler(filename, "a")
        fh.setFormatter(formatter)
        self.logger.addHandler(fh)

    def on_train_begin(self, logs=None):
        self.logger.info('Start Training'.center(40, '='))

    def on_train_end(self, logs=None):
        self.logger.info('Finish Training'.center(40, '='))

    def on_epoch_begin(self, global_step, epoch, logs=None):
        self.logger.info(f'Epoch {epoch}'.center(40, '='))

    def on_epoch_end(self, global_step, epoch, logs=None):
        log_str = '\t '.join([f'{k}={v:.5f}' for k, v in logs.items()])
        self.logger.info(f'epoch={epoch+1}\t {log_str}')

    def on_batch_end(self, global_step, local_step, logs=None):
        if (global_step+1) % self.interval == 0:
            log_str = '\t '.join([f'{k}={v:.5f}' for k, v in logs.items()])
            self.logger.info(f'step={global_step+1}\t {log_str}')


class Tensorboard(Callback):
    '''默认Tensorboard
    对于valid/dev和test的Tensorboard需要在evaluate之后对log进行赋值,如log['dev/f1']=f1,并在Evaluator之后调用
    赋值需要分栏目的用'/'进行分隔
    若每隔一定steps对验证集评估,则Tensorboard的interval设置成和Evaluater一致或者约数,保证Tensorboard能记录到
    '''
    def __init__(self, dirname, interval=10, prefix='train'):
        super(Tensorboard, self).__init__()
        self.interval = interval
        self.prefix = prefix

        from tensorboardX import SummaryWriter
        self.writer = SummaryWriter(log_dir=str(dirname))  # prepare summary writer

    def on_epoch_end(self, global_step, epoch, logs=None):
        for k, v in logs.items():
            index = k if '/' in k else f"{self.prefix}/{k}"
            self.writer.add_scalar(index, v, global_step)

    def on_batch_end(self, global_step, local_step, logs=None):
        if (global_step+1) % self.interval == 0:
            for k, v in logs.items():
                index = k if '/' in k else f"{self.prefix}/{k}"
                self.writer.add_scalar(index, v, global_step)


def metric_mapping(metric, func, y_pred, y_true):
    # 自定义metrics
    if inspect.isfunction(func):
        metric_res = func(y_pred, y_true)
        if inspect.isfunction(metric):
            # 如果直接传入回调函数(无key),要求回调函数返回Dict[String: Int/Float]类型
            assert isinstance(metric_res, dict), 'Custom metrics callbacks should return "Dict[String: Int/Float]" value'
        elif isinstance(metric, str):
            # 如果直接传入回调函数(有key),要求回调函数返回Int/Float类型
            assert isinstance(metric_res, (int, float)), 'Custom metrics callbacks should return "Int, Float" value'
        return metric_res
    elif metric == 'loss':
        pass
    # 自带metrics
    elif isinstance(metric, str):
        # 如果forward返回了list, tuple,则选取第一项
        y_pred_tmp = y_pred[0] if isinstance(y_pred, (list, tuple)) else y_pred
        y_true_tmp = y_true[0] if isinstance(y_true, (list, tuple)) else y_true

        # 根据shape做预处理
        if len(y_pred_tmp.shape) == len(y_true_tmp.shape) + 1:
            y_pred_tmp = torch.argmax(y_pred_tmp, dim=-1)
        elif len(y_pred_tmp.shape) == len(y_true_tmp.shape):
            pass
        else:
            raise ValueError(f'y_pred_tmp.shape={y_pred_tmp.shape} while y_true_tmp.shape={y_true_tmp.shape}')

        # 执行内置的metric
        if metric in {'accuracy', 'acc'}:
            return torch.sum(y_pred_tmp.eq(y_true_tmp)).item() / y_true_tmp.numel()
        elif metric in {'mae', 'MAE', 'mean_absolute_error'}:
            return torch.mean(torch.abs(y_pred_tmp - y_true_tmp)).item()
        elif metric in {'mse', 'MSE', 'mean_squared_error'}:
            return torch.mean(torch.square(y_pred_tmp - y_true_tmp)).item()
        elif metric in {'mape', 'MAPE', 'mean_absolute_percentage_error'}:
            diff = torch.abs((y_true_tmp - y_pred_tmp) / torch.clamp(torch.abs(y_true_tmp), 1e-7, None))
            return 100. * torch.mean(diff).item()
        elif metric in {'msle', 'MSLE', 'mean_squared_logarithmic_error'}:
            first_log = torch.log(torch.clamp(y_pred_tmp, 1e-7, None) + 1.)
            second_log = torch.log(torch.clamp(y_true_tmp, 1e-7, None) + 1.)
            return torch.mean(torch.square(first_log - second_log)).item()

    return None

def softmax(x, axis=-1):
    """numpy版softmax
    """
    x = x - x.max(axis=axis, keepdims=True)
    x = np.exp(x)
    return x / x.sum(axis=axis, keepdims=True)

class AutoRegressiveDecoder(object):
    """通用自回归生成模型解码基类
    包含beam search和random sample两种策略
    """
    def __init__(self, start_id, end_id, maxlen, minlen=1, device='cpu'):
        self.start_id = start_id
        self.end_id = end_id
        self.maxlen = maxlen
        self.minlen = minlen
        self.models = {}
        self.device = device
        if start_id is None:
            self.first_output_ids = torch.empty((1, 0), dtype=int, device=device)
        else:
            self.first_output_ids = torch.tensor([[self.start_id]], device=device)

    @staticmethod
    def wraps(default_rtype='probas', use_states=False):
        """用来进一步完善predict函数
        目前包含: 1. 设置rtype参数,并做相应处理;
                  2. 确定states的使用,并做相应处理;
                  3. 设置温度参数,并做相应处理。
        """
        def actual_decorator(predict):
            def new_predict(self, inputs, output_ids, states, temperature=1, rtype=default_rtype):
                assert rtype in ['probas', 'logits']
                prediction = predict(self, inputs, output_ids, states)

                if not use_states:
                    prediction = (prediction, None)

                if default_rtype == 'logits':
                    prediction = (nn.Softmax(dim=-1)(prediction[0] / temperature), prediction[1])
                elif temperature != 1:
                    probas = torch.power(prediction[0], 1.0 / temperature)
                    probas = probas / probas.sum(axis=-1, keepdims=True)
                    prediction = (probas, prediction[1])

                if rtype == 'probas':
                    return prediction
                else:
                    return torch.log(prediction[0] + 1e-12), prediction[1]

            return new_predict

        return actual_decorator

    def predict(self, inputs, output_ids, states=None):
        """用户需自定义递归预测函数
        说明: 定义的时候,需要用wraps方法进行装饰,传入default_rtype和use_states,
             其中default_rtype为字符串logits或probas,probas时返回归一化的概率,
             rtype=logits时则返回softmax前的结果或者概率对数。
        返回: 二元组 (得分或概率, states)
        """
        raise NotImplementedError

    def beam_search(self, inputs_raw, topk, states=None, temperature=1, min_ends=1, add_btz_dim=True):
        """beam search解码
        说明: 这里的topk即beam size;
        返回: 最优解码序列。
        """
        inputs = []
        for i in inputs_raw:
            if isinstance(i, torch.torch.Tensor):
                pass
            elif isinstance(i, (list, tuple, np.ndarray)) and add_btz_dim:
                i = torch.tensor([i], device=self.device)
            elif isinstance(i, (list, tuple, np.ndarray)) and not add_btz_dim:
                i = torch.tensor(i, device=self.device)
            else:
                raise ValueError('Beam search inputs ele only support tensor、array、list、tuple')
            inputs.append(i)

        output_ids, output_scores = self.first_output_ids, torch.zeros(1, device=self.device)
        for step in range(self.maxlen):
            scores, states = self.predict(inputs, output_ids, states, temperature, 'logits')  # 计算当前得分
            if step == 0:  # 第1步预测后将输入重复topk次
                inputs = [i.repeat([topk]+[1]*(len(i.shape)-1)) for i in inputs]
            scores = output_scores.reshape((-1, 1)) + scores  # 综合累积得分
            indices = scores.flatten().argsort(dim=-1, descending=True)[:topk]  # 仅保留topk
            if torch.__version__ <= '1.7.1':
                indices_1 = indices // scores.shape[1]  # 兼容老版本
            else:
                indices_1 = torch.div(indices, scores.shape[1], rounding_mode='floor')  # 行索引
            indices_2 = (indices % scores.shape[1]).reshape((-1, 1))  # 列索引
            output_ids = torch.cat([output_ids[indices_1], indices_2], 1)  # 更新输出
            output_scores = take_along_dim(scores, indices, dim=None)  # 更新得分
            is_end = output_ids[:, -1] == self.end_id  # 标记是否以end标记结束
            end_counts = (output_ids == self.end_id).sum(1)  # 统计出现的end标记
            if output_ids.shape[1] >= self.minlen:  # 最短长度判断
                best = output_scores.argmax()  # 得分最大的那个
                if is_end[best] and end_counts[best] >= min_ends:  # 如果已经终止
                    return output_ids[best]  # 直接输出
                else:  # 否则,只保留未完成部分
                    flag = ~is_end | (end_counts < min_ends)  # 标记未完成序列
                    if not flag.all():  # 如果有已完成的
                        inputs = [i[flag] for i in inputs]  # 扔掉已完成序列
                        output_ids = output_ids[flag]  # 扔掉已完成序列
                        output_scores = output_scores[flag]  # 扔掉已完成序列
                        end_counts = end_counts[flag]  # 扔掉已完成end计数
                        topk = flag.sum()  # topk相应变化
        # 达到长度直接输出
        return output_ids[output_scores.argmax()]

    def random_sample(self, inputs, n, topk=None, topp=None, states=None, temperature=1, min_ends=1):
        """随机采样n个结果
        说明: 非None的topk表示每一步只从概率最高的topk个中采样;而非None的topp
             表示每一步只从概率最高的且概率之和刚好达到topp的若干个token中采样。
        返回: n个解码序列组成的list。
        """
        inputs = [torch.tensor([i], device=self.device) for i in inputs]
        output_ids = self.first_output_ids
        results = []
        for step in range(self.maxlen):
            probas, states = self.predict(inputs, output_ids, states, temperature, 'probas')  # 计算当前概率
            probas /= probas.sum(dim=-1, keepdims=True)  # 确保归一化
            if step == 0:  # 第1步预测后将结果重复n次
                probas = probas.repeat([n]+[1]*(len(probas.shape)-1))
                inputs = [i.repeat([n]+[1]*(len(i.shape)-1)) for i in inputs]
                output_ids = output_ids.repeat([n]+[1]*(len(output_ids.shape)-1))
            if topk is not None:
                k_indices = probas.argsort(dim=-1, descending=True)[:, :topk]  # 仅保留topk
                probas = take_along_dim(probas, k_indices, dim=1)  # topk概率
                probas /= probas.sum(dim=1, keepdims=True)  # 重新归一化
            if topp is not None:
                p_indices = probas.argsort(dim=-1, descending=True)  # 从高到低排序
                probas = take_along_dim(probas, p_indices, dim=-1)  # 排序概率
                cumsum_probas = torch.cumsum(probas, dim=-1)  # 累积概率
                flag = torch.roll(cumsum_probas >= topp, 1, dims=1)  # 标记超过topp的部分
                flag[:, 0] = False  # 结合上面的torch.roll,实现平移一位的效果
                probas[flag] = 0  # 后面的全部置零
                probas /= probas.sum(dim=1, keepdims=True)  # 重新归一化

            sample_func = lambda p: torch.multinomial(p, 1)  # 按概率采样函数
            sample_ids = torch.stack([sample_func(p) for p in probas])
            sample_ids = sample_ids.reshape((-1, 1))  # 对齐形状
            if topp is not None:
                sample_ids = take_along_dim(p_indices, sample_ids, dim=1)  # 对齐原id
            if topk is not None:
                sample_ids = take_along_dim(k_indices, sample_ids, dim=1)  # 对齐原id
            output_ids = torch.cat([output_ids, sample_ids], 1)  # 更新输出
            is_end = output_ids[:, -1] == self.end_id  # 标记是否以end标记结束
            end_counts = (output_ids == self.end_id).sum(1)  # 统计出现的end标记
            if output_ids.shape[1] >= self.minlen:  # 最短长度判断
                flag = is_end & (end_counts >= min_ends)  # 标记已完成序列
                if flag.any():  # 如果有已完成的
                    for ids in output_ids[flag]:  # 存好已完成序列
                        results.append(ids)
                    flag = (flag == False)  # 标记未完成序列
                    inputs = [i[flag] for i in inputs]  # 只保留未完成部分输入
                    output_ids = output_ids[flag]  # 只保留未完成部分候选集
                    end_counts = end_counts[flag]  # 只保留未完成部分end计数
                    if len(output_ids) == 0:
                        break
        # 如果还有未完成序列,直接放入结果
        for ids in output_ids:
            results.append(ids)
        # 返回结果
        return results


def search_layer(model, layer_name, retrun_first=True):
    '''根据layer_name搜索并返回参数/参数list
    '''
    return_list = []
    for name, param in model.named_parameters():
        if param.requires_grad and layer_name in name:
            return_list.append(param)
    if len(return_list) == 0:
        return None
    if retrun_first:
        return return_list[0]
    else:
        return return_list


class ListDataset(Dataset):
    '''数据是List格式Dataset,支持传入file_path或者外部已读入的data(List格式)
    '''
    def __init__(self, file_path=None, data=None, **kwargs):
        self.kwargs = kwargs
        if isinstance(file_path, (str, tuple, list)):
            self.data = self.load_data(file_path)
        elif isinstance(data, list):
            self.data = data
        else:
            raise ValueError('The input args shall be str format file_path / list format dataset')

    def __len__(self):
        return len(self.data)

    def __getitem__(self, index):
        return self.data[index]

    @staticmethod
    def load_data(file_path):
        return file_path


class IterDataset(IterableDataset):
    '''流式读取文件,用于大数据量、多小文件
       使用时候需要注意steps_per_epoch != None
    '''
    def __init__(self, file_path=None, **kwargs):
        self.kwargs = kwargs
        if isinstance(file_path, (str, tuple, list)):
            self.file_path = file_path
        else:
            raise ValueError('The input args shall be str format file_path / list format dataset')
    
    def __iter__(self):
        return self.load_data(self.file_path)

    @staticmethod
    def load_data(file_path, verbose=0):
        if isinstance(file_path, (tuple, list)):
            for file in file_path:
                if verbose != 0:
                    print("Load data: ", file)
                with open(file, 'r') as file_obj:
                    for line in file_obj:
                        yield line
        elif isinstance(file_path, str):
            with open(file_path, 'r') as file_obj:
                for line in file_obj:
                    yield line


def get_sinusoid_encoding_table(n_position, d_hid, padding_idx=None):
    ''' sinusoid编码
        Returns: [seq_len, d_hid]
    '''
    position = torch.arange(0, n_position, dtype=torch.float).unsqueeze(1)
    div_term = torch.exp(torch.arange(0, d_hid, 2).float() * (-math.log(10000.0) / d_hid))
    embeddings_table = torch.zeros(n_position, d_hid)
    embeddings_table[:, 0::2] = torch.sin(position * div_term)
    embeddings_table[:, 1::2] = torch.cos(position * div_term)
    return embeddings_table

    # 第二种实现
    position_ids = torch.arange(0, n_position).unsqueeze(1)
    position_ids = position_ids.expand(-1, d_hid)
    indices = torch.arange(0, d_hid)
    position_ids = position_ids * torch.pow(10000, -2 * torch.true_divide(torch.floor_divide(indices, 2), d_hid))
    position_ids[:, ::2] = torch.sin(position_ids[:, ::2])
    position_ids[:, 1::2] = torch.cos(position_ids[:, 1::2])
    return position_ids


def cal_ts_num(tensor_shape):
    '''查看某个tensor在gc中的数量
    '''
    cal_num = 0
    for obj in gc.get_objects():
        try:
            if torch.is_tensor(obj): # or (hasattr(obj, 'data') and torch.is_tensor(obj.data)):
                tensor = obj
            else:
                continue
            if tensor.is_cuda and tensor.size() == tensor_shape:
                print(tensor.shape)
                cal_num+=1
        except Exception as e:
            print('A trivial exception occured: {}'.format(e))
    print(cal_num)


def get_kw(cls, kwargs):
    '''保留排除cls的入参后的kwargs
    '''
    kwargs_new = {}
    for k in kwargs:
        if k not in set(inspect.getargspec(cls)[0]):
            kwargs_new[k] = kwargs[k]
    return kwargs_new


class FGM():
    '''对抗训练
    '''
    def __init__(self, model):
        self.model = model
        self.backup = {}

    def attack(self, epsilon=1., emb_name='word_embeddings', **kwargs):
        # emb_name这个参数要换成你模型中embedding的参数名
        # 例如,self.emb = nn.Embedding(5000, 100)
        for name, param in self.model.named_parameters():
            if param.requires_grad and emb_name in name:
                self.backup[name] = param.data.clone()
                norm = torch.norm(param.grad) # 默认为2范数
                if norm != 0 and not torch.isnan(norm):  # nan是为了apex混合精度时:
                    r_at = epsilon * param.grad / norm
                    param.data.add_(r_at)

    def restore(self, emb_name='emb', **kwargs):
        # emb_name这个参数要换成你模型中embedding的参数名
        for name, param in self.model.named_parameters():
            if param.requires_grad and emb_name in name: 
                assert name in self.backup
                param.data = self.backup[name]
        self.backup = {}


class PGD():
    '''对抗训练
    '''
    def __init__(self, model):
        self.model = model
        self.emb_backup = {}
        self.grad_backup = {}

    def attack(self, epsilon=1., alpha=0.3, emb_name='word_embeddings', is_first_attack=False, **kwargs):
        # emb_name这个参数要换成你模型中embedding的参数名
        for name, param in self.model.named_parameters():
            if param.requires_grad and emb_name in name:
                if is_first_attack:
                    self.emb_backup[name] = param.data.clone()
                norm = torch.norm(param.grad)
                if norm != 0 and not torch.isnan(norm):  # nan是为了apex混合精度时
                    r_at = alpha * param.grad / norm
                    param.data.add_(r_at)
                    param.data = self.project(name, param.data, epsilon)

    def restore(self, emb_name='emb', **kwargs):
        # emb_name这个参数要换成你模型中embedding的参数名
        for name, param in self.model.named_parameters():
            if param.requires_grad and emb_name in name: 
                assert name in self.emb_backup
                param.data = self.emb_backup[name]
        self.emb_backup = {}
        
    def project(self, param_name, param_data, epsilon):
        r = param_data - self.emb_backup[param_name]
        if torch.norm(r) > epsilon:
            r = epsilon * r / torch.norm(r)
        return self.emb_backup[param_name] + r
        
    def backup_grad(self):
        for name, param in self.model.named_parameters():
            # 修复如pooling层参与foward,但是不参与backward过程时grad为空的问题
            if param.requires_grad and (param.grad is not None):
                self.grad_backup[name] = param.grad.clone()
    
    def restore_grad(self):
        for name, param in self.model.named_parameters():
            if param.requires_grad and (param.grad is not None):
                param.grad = self.grad_backup[name]


class VAT():
    '''虚拟对抗训练 https://github.com/namisan/mt-dnn/blob/v0.2/alum/adv_masked_lm.py
    '''
    def __init__(self, model, emb_name='word_embeddings', noise_var=1e-5, noise_gamma=1e-6, adv_step_size=1e-3, 
                 adv_alpha=1, norm_type='l2', **kwargs):
        self.model = model
        self.noise_var = noise_var  # 噪声的方差
        self.noise_gamma = noise_gamma # eps
        self.adv_step_size = adv_step_size  # 学习率
        self.adv_alpha = adv_alpha  # 对抗loss的权重
        self.norm_type = norm_type  # 归一化方式
        self.embed = None
        for (name, module) in self.model.named_modules():
            if emb_name in name:
                module.register_forward_hook(hook=self.hook)

    def hook(self, module, fea_in, fea_out):
        self.embed = fea_out
        return None
    
    def forward_(self, train_X, new_embed):
        # 把原来的train_X中的token_ids换成embedding形式
        if isinstance(train_X, (tuple, list)):
            new_train_X = [new_embed] + train_X[1:]
            adv_output = self.model.forward(*new_train_X) if self.model.forward.__code__.co_argcount >= 3 else self.model.forward(new_train_X)
        elif isinstance(train_X, torch.Tensor):
            adv_output = self.model.forward(new_embed)
        return adv_output

    def virtual_adversarial_training(self, train_X, logits):
        # 初始扰动 r
        noise = self.embed.data.new(self.embed.size()).normal_(0, 1) * self.noise_var
        noise.requires_grad_()
        # x + r
        new_embed = self.embed.data.detach() + noise
        adv_output = self.forward_(train_X, new_embed)  # forward第一次
        adv_logits = adv_output[0] if isinstance(adv_output, (list, tuple)) else adv_output
        adv_loss = self.kl(adv_logits, logits.detach(), reduction="batchmean")
        delta_grad, = torch.autograd.grad(adv_loss, noise, only_inputs=True)
        norm = delta_grad.norm()
        # 梯度消失,退出
        if torch.isnan(norm) or torch.isinf(norm):
            return None
        # inner sum
        noise = noise + delta_grad * self.adv_step_size
        # projection
        noise = self.adv_project(noise, norm_type=self.norm_type, eps=self.noise_gamma)
        new_embed = self.embed.data.detach() + noise
        new_embed = new_embed.detach()
        # 在进行一次训练
        adv_output = self.forward_(train_X, new_embed)  # forward第二次
        adv_logits = adv_output[0] if isinstance(adv_output, (list, tuple)) else adv_output
        adv_loss_f = self.kl(adv_logits, logits.detach())
        adv_loss_b = self.kl(logits, adv_logits.detach())
        # 在预训练时设置为10,下游任务设置为1
        adv_loss = (adv_loss_f + adv_loss_b) * self.adv_alpha
        return adv_loss
    
    @staticmethod
    def kl(inputs, targets, reduction="sum"):
        """
        计算kl散度
        inputs:tensor,logits
        targets:tensor,logits
        """
        loss = F.kl_div(F.log_softmax(inputs, dim=-1), F.softmax(targets, dim=-1), reduction=reduction)
        return loss

    @staticmethod
    def adv_project(grad, norm_type='inf', eps=1e-6):
        """
        L0,L1,L2正则,对于扰动计算
        """
        if norm_type == 'l2':
            direction = grad / (torch.norm(grad, dim=-1, keepdim=True) + eps)
        elif norm_type == 'l1':
            direction = grad.sign()
        else:
            direction = grad / (grad.abs().max(-1, keepdim=True)[0] + eps)
        return direction


class WebServing(object):
    """简单的Web接口
    用法:
        arguments = {'text': (None, True), 'n': (int, False)}
        web = WebServing(port=8864)
        web.route('/gen_synonyms', gen_synonyms, arguments)
        web.start()
        # 然后访问 http://127.0.0.1:8864/gen_synonyms?text=你好
    说明:
        基于bottlepy简单封装,仅作为临时测试使用,不保证性能。
        目前仅保证支持 Tensorflow 1.x + Keras <= 2.3.1。
        欢迎有经验的开发者帮忙改进。
    依赖:
        pip install bottle
        pip install paste
        (如果不用 server='paste' 的话,可以不装paste库)
    """
    def __init__(self, host='0.0.0.0', port=8000, server='paste'):

        import bottle

        self.host = host
        self.port = port
        self.server = server
        self.bottle = bottle

    def wraps(self, func, arguments, method='GET'):
        """封装为接口函数
        参数:
            func:要转换为接口的函数,需要保证输出可以json化,即需要
                  保证 json.dumps(func(inputs)) 能被执行成功;
            arguments:声明func所需参数,其中key为参数名,value[0]为
                       对应的转换函数(接口获取到的参数值都是字符串
                       型),value[1]为该参数是否必须;
            method:GET或者POST。
        """
        def new_func():
            outputs = {'code': 0, 'desc': u'succeeded', 'data': {}}
            kwargs = {}
            for key, value in arguments.items():
                if method == 'GET':
                    result = self.bottle.request.GET.getunicode(key)
                else:
                    result = self.bottle.request.POST.getunicode(key)
                if result is None:
                    if value[1]:
                        outputs['code'] = 1
                        outputs['desc'] = 'lack of "%s" argument' % key
                        return json.dumps(outputs, ensure_ascii=False)
                else:
                    if value[0] is not None:
                        result = value[0](result)
                    kwargs[key] = result
            try:
                outputs['data'] = func(**kwargs)
            except Exception as e:
                outputs['code'] = 2
                outputs['desc'] = str(e)
            return json.dumps(outputs, ensure_ascii=False)

        return new_func

    def route(self, path, func, arguments, method='GET'):
        """添加接口
        """
        func = self.wraps(func, arguments, method)
        self.bottle.route(path, method=method)(func)

    def start(self):
        """启动服务
        """
        self.bottle.run(host=self.host, port=self.port, server=self.server)


def get_pool_emb(hidden_state=None, pooler=None, attention_mask=None, pool_strategy='cls', custom_layer=None):
    ''' 获取句向量
    '''
    if pool_strategy == 'pooler':
        return pooler
    elif pool_strategy == 'cls':
        if isinstance(hidden_state, (list, tuple)):
            hidden_state = hidden_state[-1]
        assert isinstance(hidden_state, torch.Tensor), f'{pool_strategy} strategy request tensor hidden_state'
        return hidden_state[:, 0]
    elif pool_strategy in {'last-avg', 'mean'}:
        if isinstance(hidden_state, (list, tuple)):
            hidden_state = hidden_state[-1]
        assert isinstance(hidden_state, torch.Tensor), f'{pool_strategy} pooling strategy request tensor hidden_state'
        hid = torch.sum(hidden_state * attention_mask[:, :, None], dim=1)
        attention_mask = torch.sum(attention_mask, dim=1)[:, None]
        return hid / attention_mask
    elif pool_strategy in {'last-max', 'max'}:
        if isinstance(hidden_state, (list, tuple)):
            hidden_state = hidden_state[-1]
        assert isinstance(hidden_state, torch.Tensor), f'{pool_strategy} pooling strategy request tensor hidden_state'
        hid = hidden_state * attention_mask[:, :, None]
        return torch.max(hid, dim=1)
    elif pool_strategy == 'first-last-avg':
        assert isinstance(hidden_state, list), f'{pool_strategy} pooling strategy request list hidden_state'
        hid = torch.sum(hidden_state[1] * attention_mask[:, :, None], dim=1) # 这里不取0
        hid += torch.sum(hidden_state[-1] * attention_mask[:, :, None], dim=1)
        attention_mask = torch.sum(attention_mask, dim=1)[:, None]
        return hid / (2 * attention_mask)
    elif pool_strategy == 'custom':
        # 取指定层
        assert isinstance(hidden_state, list), f'{pool_strategy} pooling strategy request list hidden_state'
        assert isinstance(custom_layer, (int, list, tuple)), f'{pool_strategy} pooling strategy request int/list/tuple custom_layer'
        custom_layer = [custom_layer] if isinstance(custom_layer, int) else custom_layer
        hid = 0
        for i, layer in enumerate(custom_layer, start=1):
            hid += torch.sum(hidden_state[layer] * attention_mask[:, :, None], dim=1)
        attention_mask = torch.sum(attention_mask, dim=1)[:, None]
        return hid / (i * attention_mask)
    else:
        raise ValueError('pool_strategy illegal')


def seed_everything(seed=None):
    '''固定seed
    '''
    max_seed_value = np.iinfo(np.uint32).max
    min_seed_value = np.iinfo(np.uint32).min

    if (seed is None) or not (min_seed_value <= seed <= max_seed_value):
        seed = random.randint(np.iinfo(np.uint32).min, np.iinfo(np.uint32).max)
    print(f"Global seed set to {seed}")
    os.environ["PYTHONHASHSEED"] = str(seed)
    random.seed(seed)
    np.random.seed(seed)
    torch.manual_seed(seed)
    torch.cuda.manual_seed(seed)
    torch.cuda.manual_seed_all(seed)
    return seed


def parallel_apply_generator(func, iterable, workers, max_queue_size, dummy=False, random_seeds=True):
    """多进程或多线程地将func应用到iterable的每个元素中(直接从bert4keras中移植过来)。
    注意这个apply是异步且无序的,也就是说依次输入a,b,c,但是输出可能是func(c), func(a), func(b)。结果将作为一个
    generator返回,其中每个item是输入的序号以及该输入对应的处理结果。
    参数:
        dummy: False是多进程/线性,True则是多线程/线性;
        random_seeds: 每个进程的随机种子。
    """
    if dummy:
        from multiprocessing.dummy import Pool, Queue
    else:
        from multiprocessing import Pool, Queue

    in_queue, out_queue, seed_queue = Queue(max_queue_size), Queue(), Queue()
    if random_seeds is True:
        random_seeds = [None] * workers
    elif random_seeds is None or random_seeds is False:
        random_seeds = []
    for seed in random_seeds:
        seed_queue.put(seed)

    def worker_step(in_queue, out_queue):
        """单步函数包装成循环执行
        """
        if not seed_queue.empty():
            np.random.seed(seed_queue.get())
        while True:
            i, d = in_queue.get()
            r = func(d)
            out_queue.put((i, r))

    # 启动多进程/线程
    pool = Pool(workers, worker_step, (in_queue, out_queue))

    # 存入数据,取出结果
    in_count, out_count = 0, 0
    for i, d in enumerate(iterable):
        in_count += 1
        while True:
            try:
                in_queue.put((i, d), block=False)
                break
            except six.moves.queue.Full:
                while out_queue.qsize() > max_queue_size:
                    yield out_queue.get()
                    out_count += 1
        if out_queue.qsize() > 0:
            yield out_queue.get()
            out_count += 1

    while out_count != in_count:
        yield out_queue.get()
        out_count += 1

    pool.terminate()


def parallel_apply(func, iterable, workers, max_queue_size, callback=None, dummy=False, random_seeds=True, unordered=True):
    """多进程或多线程地将func应用到iterable的每个元素中(直接从bert4keras中移植过来)。
    注意这个apply是异步且无序的,也就是说依次输入a,b,c,但是输出可能是func(c), func(a), func(b)。
    参数:
        callback: 处理单个输出的回调函数;
        dummy: False是多进程/线性,True则是多线程/线性;windows需设置dummy=True
        random_seeds: 每个进程的随机种子;
        unordered: 若为False,则按照输入顺序返回,仅当callback为None时生效。
    """
    generator = parallel_apply_generator(func, iterable, workers, max_queue_size, dummy, random_seeds)

    if callback is None:
        if unordered:
            return [d for i, d in generator]
        else:
            results = sorted(generator, key=lambda d: d[0])
            return [d for i, d in results]
    else:
        for i, d in generator:
            callback(d)