losses.py 13.9 KB
Newer Older
xuxo's avatar
xuxo committed
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
from ast import arg
from tracemalloc import start
import torch
import torch.nn as nn
import torch.nn.functional as F
import math
import numpy as np


class FocalLoss(nn.Module):
    '''Multi-class Focal loss implementation'''
    def __init__(self, gamma=2, weight=None,ignore_index=-100):
        super(FocalLoss, self).__init__()
        self.gamma = gamma
        self.weight = weight
        self.ignore_index=ignore_index

    def forward(self, input, target):
        """
        input: [N, C]
        target: [N, ]
        """
        logpt = F.log_softmax(input, dim=1)
        pt = torch.exp(logpt)
        logpt = (1-pt)**self.gamma * logpt
        loss = F.nll_loss(logpt, target, self.weight,ignore_index=self.ignore_index)
        return loss


class LabelSmoothingCrossEntropy(nn.Module):
    def __init__(self, eps=0.1, reduction='mean',ignore_index=-100):
        super(LabelSmoothingCrossEntropy, self).__init__()
        self.eps = eps
        self.reduction = reduction
        self.ignore_index = ignore_index

    def forward(self, output, target):
        c = output.size()[-1]
        log_preds = F.log_softmax(output, dim=-1)
        if self.reduction=='sum':
            loss = -log_preds.sum()
        else:
            loss = -log_preds.sum(dim=-1)
            if self.reduction=='mean':
                loss = loss.mean()
        return loss*self.eps/c + (1-self.eps) * F.nll_loss(log_preds, target, reduction=self.reduction,
                                                           ignore_index=self.ignore_index)


class MultilabelCategoricalCrossentropy(nn.Module):
    """多标签分类的交叉熵
    说明:y_true和y_pred的shape一致,y_true的元素非0即1, 1表示对应的类为目标类,0表示对应的类为非目标类。
    警告:请保证y_pred的值域是全体实数,换言之一般情况下y_pred不用加激活函数,尤其是不能加sigmoid或者softmax!预测
         阶段则输出y_pred大于0的类。如有疑问,请仔细阅读并理解本文。
    参考:https://kexue.fm/archives/7359
    """
    def __init__(self, **kwargs):
        super().__init__(**kwargs)
    def forward(self, y_pred, y_true):
        """ y_true ([Tensor]): [..., num_classes]
            y_pred ([Tensor]): [..., num_classes]
        """
        y_pred = (1-2*y_true) * y_pred
        y_pred_pos = y_pred - (1-y_true) * 1e12
        y_pred_neg = y_pred - y_true * 1e12

        y_pred_pos = torch.cat([y_pred_pos, torch.zeros_like(y_pred_pos[..., :1])], dim=-1)
        y_pred_neg = torch.cat([y_pred_neg, torch.zeros_like(y_pred_neg[..., :1])], dim=-1)
        pos_loss = torch.logsumexp(y_pred_pos, dim=-1)
        neg_loss = torch.logsumexp(y_pred_neg, dim=-1)
        return (pos_loss + neg_loss).mean()


class SparseMultilabelCategoricalCrossentropy(nn.Module):
    """稀疏版多标签分类的交叉熵
    说明:
        1. y_true.shape=[..., num_positive],
           y_pred.shape=[..., num_classes];
        2. 请保证y_pred的值域是全体实数,换言之一般情况下y_pred不用加激活函数,尤其是不能加sigmoid或者softmax;
        3. 预测阶段则输出y_pred大于0的类;
        4. 详情请看:https://kexue.fm/archives/7359 。
    """
    def __init__(self, mask_zero=False, epsilon=1e-7, **kwargs):
        super().__init__(**kwargs)
        self.mask_zero = mask_zero
        self.epsilon = epsilon
        
    def forward(self, y_pred, y_true):
        zeros = torch.zeros_like(y_pred[..., :1])
        y_pred = torch.cat([y_pred, zeros], dim=-1)
        if self.mask_zero:
            infs = zeros + float('inf')
            y_pred = torch.cat([infs, y_pred[..., 1:]], dim=-1)
        y_pos_2 = torch.gather(y_pred, dim=-1, index=y_true)
        y_pos_1 = torch.cat([y_pos_2, zeros], dim=-1)
        if self.mask_zero:
            y_pred = torch.cat([-infs, y_pred[..., 1:]], dim=-1)
            y_pos_2 = torch.gather(y_pred, dim=-1, index=y_true)
        pos_loss = torch.logsumexp(-y_pos_1, dim=-1)
        all_loss = torch.logsumexp(y_pred, dim=-1)  # a
        aux_loss = torch.logsumexp(y_pos_2, dim=-1) - all_loss  # b-a
        aux_loss = torch.clamp(1 - torch.exp(aux_loss), self.epsilon, 1)  # 1-exp(b-a)
        neg_loss = all_loss + torch.log(aux_loss)  # a + log[1-exp(b-a)]
        return pos_loss + neg_loss


class ContrastiveLoss(nn.Module):
    """对比损失:减小正例之间的距离,增大正例和反例之间的距离
    公式:labels * distance_matrix.pow(2) + (1-labels)*F.relu(margin-distance_matrix).pow(2)
    https://www.sbert.net/docs/package_reference/losses.html
    """
    def __init__(self, margin=0.5, size_average=True, online=False):
        super(ContrastiveLoss, self).__init__()
        self.margin = margin
        self.size_average = size_average
        self.online = online

    def forward(self, distances, labels, pos_id=1, neg_id=0):
        if not self.online:
            losses = 0.5 * (labels.float() * distances.pow(2) + (1 - labels).float() * F.relu(self.margin - distances).pow(2))
            return losses.mean() if self.size_average else losses.sum()
        else:
            negs = distances[labels == neg_id]
            poss = distances[labels == pos_id]

            # select hard positive and hard negative pairs
            negative_pairs = negs[negs < (poss.max() if len(poss) > 1 else negs.mean())]
            positive_pairs = poss[poss > (negs.min() if len(negs) > 1 else poss.mean())]
            
            positive_loss = positive_pairs.pow(2).sum()
            negative_loss = F.relu(self.margin - negative_pairs).pow(2).sum()
            return positive_loss + negative_loss


class RDropLoss(nn.Module):
    '''R-Drop的Loss实现,官方项目:https://github.com/dropreg/R-Drop
    '''
    def __init__(self, alpha=4, rank='adjacent'):
        super().__init__()
        self.alpha = alpha
        # 支持两种方式,一种是奇偶相邻排列,一种是上下排列
        assert rank in {'adjacent', 'updown'}, "rank kwarg only support 'adjacent' and 'updown' "
        self.rank = rank
        self.loss_sup = nn.CrossEntropyLoss()
        self.loss_rdrop = nn.KLDivLoss(reduction='none')

    def forward(self, *args):
        '''支持两种方式: 一种是y_pred, y_true, 另一种是y_pred1, y_pred2, y_true
        '''
        assert len(args) in {2, 3}, 'RDropLoss only support 2 or 3 input args'
        # y_pred是1个Tensor
        if len(args) == 2:
            y_pred, y_true = args
            loss_sup = self.loss_sup(y_pred, y_true)  # 两个都算

            if self.rank == 'adjacent':
                y_pred1 = y_pred[1::2]
                y_pred2 = y_pred[::2]
            elif self.rank == 'updown':
                half_btz = y_true.shape[0] // 2
                y_pred1 = y_pred[:half_btz]
                y_pred2 = y_pred[half_btz:]
        # y_pred是两个tensor
        else:
            y_pred1, y_pred2, y_true = args
            loss_sup = self.loss_sup(y_pred1, y_true)

        loss_rdrop1 = self.loss_rdrop(F.log_softmax(y_pred1, dim=-1), F.softmax(y_pred2, dim=-1))
        loss_rdrop2 = self.loss_rdrop(F.log_softmax(y_pred2, dim=-1), F.softmax(y_pred1, dim=-1))
        return loss_sup + torch.mean(loss_rdrop1 + loss_rdrop2) / 4 * self.alpha


class UDALoss(nn.Module):
    '''UDALoss,使用时候需要继承一下,因为forward需要使用到global_step和total_steps
    https://arxiv.org/abs/1904.12848
    '''
    def __init__(self, tsa_schedule=None, total_steps=None, start_p=0, end_p=1, return_all_loss=True):
        super().__init__()
        self.loss_sup = nn.CrossEntropyLoss()
        self.loss_unsup = nn.KLDivLoss(reduction='batchmean')
        self.tsa_schedule = tsa_schedule
        self.start = start_p
        self.end = end_p
        if self.tsa_schedule:
            assert self.tsa_schedule in {'linear_schedule', 'exp_schedule', 'log_schedule'}, 'tsa_schedule config illegal'
        self.return_all_loss = return_all_loss

    def forward(self, y_pred, y_true_sup, global_step, total_steps):
        sup_size = y_true_sup.size(0)
        unsup_size = (y_pred.size(0) - sup_size) // 2

        # 有监督部分, 用交叉熵损失
        y_pred_sup = y_pred[:sup_size]
        if self.tsa_schedule is None:
            loss_sup = self.loss_sup(y_pred_sup, y_true_sup)
        else:  # 使用tsa来去掉预测概率较高的有监督样本
            threshold = self.get_tsa_threshold(self.tsa_schedule, global_step, total_steps, self.start, self.end)
            true_prob = torch.gather(F.softmax(y_pred_sup, dim=-1), dim=1, index=y_true_sup[:, None])
            sel_rows = true_prob.lt(threshold).sum(dim=-1).gt(0)  # 仅保留小于阈值的样本
            loss_sup = self.loss_sup(y_pred_sup[sel_rows], y_true_sup[sel_rows]) if sel_rows.sum() > 0 else 0

        # 无监督部分,这里用KL散度,也可以用交叉熵
        y_true_unsup = y_pred[sup_size:sup_size+unsup_size]
        y_true_unsup = F.softmax(y_true_unsup.detach(), dim=-1)
        y_pred_unsup = F.log_softmax(y_pred[sup_size+unsup_size:], dim=-1)
        loss_unsup = self.loss_unsup(y_pred_unsup, y_true_unsup)
        if self.return_all_loss:
            return loss_sup + loss_unsup, loss_sup, loss_unsup
        else:
            return loss_sup + loss_unsup

    @ staticmethod
    def get_tsa_threshold(schedule, global_step, num_train_steps, start, end):
        training_progress = global_step / num_train_steps
        if schedule == "linear_schedule":
            threshold = training_progress
        elif schedule == "exp_schedule":
            scale = 5
            threshold = math.exp((training_progress - 1) * scale)
        elif schedule == "log_schedule":
            scale = 5
            threshold = 1 - math.exp((-training_progress) * scale)
        return threshold * (end - start) + start


class TemporalEnsemblingLoss(nn.Module):
    '''TemporalEnsembling的实现,思路是在监督loss的基础上,增加一个mse的一致性损失loss
       官方项目:https://github.com/s-laine/tempens
       pytorch第三方实现:https://github.com/ferretj/temporal-ensembling
       使用的时候,train_dataloader的shffle必须未False
    '''
    def __init__(self, epochs, max_val=10.0, ramp_up_mult=-5.0, alpha=0.5, max_batch_num=100, hist_device='cpu'):
        super().__init__()
        self.loss_sup = nn.CrossEntropyLoss()
        self.max_epochs = epochs
        self.max_val = max_val
        self.ramp_up_mult = ramp_up_mult
        self.alpha = alpha
        self.max_batch_num = max_batch_num  # 设置未None表示记录全部数据历史,数据量大时耗资源
        self.hist_unsup = []  # 历史无监督logit
        self.hist_sup = []  # 历史监督信息logit
        self.hist_device = hist_device
        self.hist_input_y = []  # 历史监督标签y
        assert (self.alpha >= 0) & (self.alpha < 1)  # 等于1的时候upata写分母为0

    def forward(self, y_pred_sup, y_pred_unsup, y_true_sup, epoch, bti):
        self.same_batch_check(y_pred_sup, y_pred_unsup, y_true_sup, bti)
        
        if (self.max_batch_num is None) or (bti < self.max_batch_num):
            self.init_hist(bti, y_pred_sup, y_pred_unsup)  # 初始化历史
            sup_ratio = float(len(y_pred_sup)) / (len(y_pred_sup) + len(y_pred_unsup))  # 监督样本的比例
            w = self.weight_schedule(epoch, sup_ratio)
            sup_loss, unsup_loss = self.temporal_loss(y_pred_sup, y_pred_unsup, y_true_sup, bti)

            # 更新
            self.hist_unsup[bti] = self.update(self.hist_unsup[bti], y_pred_unsup.detach(), epoch)
            self.hist_sup[bti] = self.update(self.hist_sup[bti], y_pred_sup.detach(), epoch)
            # if bti == 0:  $ 用于检查每个epoch数据顺序是否一致
            #     print(w, sup_loss.item(), w * unsup_loss.item())
            #     print(y_true_sup)
            return sup_loss + w * unsup_loss, sup_loss, w * unsup_loss
        else:
            return self.loss_sup(y_pred_sup, y_true_sup)

    def same_batch_check(self, y_pred_sup, y_pred_unsup, y_true_sup, bti):
        '''检测数据的前几个batch必须是一致的, 这里写死是10个
        '''
        if bti >= 10:
            return
        if bti >= len(self.hist_input_y):
            self.hist_input_y.append(y_true_sup.to(self.hist_device))
        else:  # 检测
            err_msg = 'TemporalEnsemblingLoss requests the same sort dataloader, you may need to set train_dataloader shuffle=False'
            assert self.hist_input_y[bti].equal(y_true_sup.to(self.hist_device)), err_msg
        
    def update(self, hist, y_pred, epoch):
        '''更新历史logit,利用alpha门控来控制比例
        '''
        Z = self.alpha * hist.to(y_pred) + (1. -self.alpha) * y_pred
        output = Z * (1. / (1. - self.alpha ** (epoch + 1)))
        return output.to(self.hist_device)

    def weight_schedule(self, epoch, sup_ratio):
        max_val = self.max_val * sup_ratio
        if epoch == 0:
            return 0.
        elif epoch >= self.max_epochs:
            return max_val
        return max_val * np.exp(self.ramp_up_mult * (1. - float(epoch) / self.max_epochs) ** 2)

    def temporal_loss(self, y_pred_sup, y_pred_unsup, y_true_sup, bti):
        # MSE between current and temporal outputs
        def mse_loss(out1, out2):
            quad_diff = torch.sum((F.softmax(out1, dim=1) - F.softmax(out2, dim=1)) ** 2)
            return quad_diff / out1.data.nelement()
        
        sup_loss = self.loss_sup(y_pred_sup, y_true_sup)
        # 原来实现是sup和unsup作为一个tensor,整体计算的,这里由于是拆分成两个tensor,因此分开算
        unsup_loss = mse_loss(y_pred_unsup, self.hist_unsup[bti].to(y_pred_unsup))
        unsup_loss += mse_loss(y_pred_sup, self.hist_sup[bti].to(y_pred_sup))
        return sup_loss, unsup_loss
    
    def init_hist(self, bti, y_pred_sup, y_pred_unsup):
        if bti >= len(self.hist_sup):
            self.hist_sup.append(torch.zeros_like(y_pred_sup).to(self.hist_device))
            self.hist_unsup.append(torch.zeros_like(y_pred_unsup).to(self.hist_device))