clip-score.py 4.89 KB
Newer Older
wangkaixiong's avatar
init  
wangkaixiong committed
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
import numpy as np
import pandas as pd
import torch
import sys
from tqdm import tqdm
import open_clip
import argparse, os
import torch.nn.functional as F
from PIL import Image
from torch.utils.data import Dataset
from transformers import CLIPTokenizer

class TextImagePairDataset_all(Dataset):
    def __init__(self, text_file, image_dir, tokenizer, transform=None):
        self.image_dir = image_dir
        self.text_file = text_file
        self.tokenizer = tokenizer
        self.transform = transform

        df = pd.read_csv(text_file, sep='\t')
        self.image_paths = [os.path.join(image_dir, f"{f:05}.png") for f in range(len(df))]
        # df = pd.read_csv(text_file, sep='\t')
        self.prompts = df['Prompt']

        assert len(self.image_paths) == len(self.prompts), "The number of images and texts must be the same."

    def __len__(self):
        return len(self.image_paths)

    def __getitem__(self, idx):
        if torch.is_tensor(idx):
            idx = idx.tolist()
        image_path = self.image_paths[idx]
        text = self.prompts[idx]
        image = Image.open(image_path).convert('RGB')
        image = self.transform(image) #.unsqueeze(0)
        tokens = self.tokenizer(text)

        return tokens, image

class TextImagePairDataset(Dataset):  
    def __init__(self, text_file, image_dir, tokenizer, transform=None):  
        self.image_dir = image_dir  
        self.text_file = text_file  
        self.tokenizer = tokenizer
        self.transform = transform

        self.image_paths = [os.path.join(image_dir, f) for f in os.listdir(image_dir) if f.endswith(('.png','.jpg','.jpeg','.tiff','.bmp','.gif'))]  
        self.texts = []  
        with open(text_file, 'r') as f:  
            for line in f:  
                self.texts.append(line.strip())  
          
        assert len(self.image_paths) == len(self.texts), "The number of images and texts must be the same."  
          
    def __len__(self):  
        return len(self.image_paths)  
  
    def __getitem__(self, idx):
        if torch.is_tensor(idx):
            idx = idx.tolist()

        image_path = self.image_paths[idx]
        text = self.texts[idx]  
        image = Image.open(image_path) # .convert('RGB')  
        image = self.transform(image) #.unsqueeze(0)
        tokens = self.tokenizer(text)

        return tokens, image

def calculate_clip_score(texts_file, images_dir, batch_size, device, num_workers, output):
    model_clip, _, preprocess_clip = open_clip.create_model_and_transforms('ViT-H-14', device=device, pretrained='laion2b_s32b_b79k')
    tokenizer = open_clip.get_tokenizer('ViT-H-14')
    dataset = TextImagePairDataset_all(texts_file, images_dir, tokenizer=tokenizer, transform=preprocess_clip)
    dataloader = torch.utils.data.DataLoader(dataset, batch_size=batch_size, shuffle=False, drop_last=False, num_workers=num_workers)
    all_scores = []
    all_scores_cpu = []
    all_similarity = []
    print(len(dataloader))
    for texts, imgs in tqdm(dataloader):
        texts = texts.reshape(texts.shape[1],texts.shape[2]).to(device)
        texts = texts.to(device)
        imgs = imgs.to(device)
        with torch.no_grad():
           img_fts = model_clip.encode_image(imgs)
           text_fts = model_clip.encode_text(texts)
           scores = F.cosine_similarity(img_fts, text_fts).squeeze()
           all_scores.append(scores)
    
    results_name = f"{output}.txt"
    if os.path.exists(results_name):
        os.remove(results_name)
        print("delete old results")
    for i in range(len(all_scores)):
        with open(results_name, 'a') as f:
            f.write(str(all_scores[i].cpu().numpy()) + '\n')
        all_scores_cpu.append(all_scores[i].cpu().numpy())
    average_score = np.mean(all_scores_cpu)
    return average_score

def main():
    parser = argparse.ArgumentParser()
    parser.add_argument(
        "--texts",
        type=str,
        nargs="?",
        default="./PartiPrompts.tsv", #数据集路径
        # default="texts/text.txt",
    )
    parser.add_argument(
        "--images",
        type=str,
        nargs="?",
        default="./DPM-sample"  #保存图片的文件夹路径
    )
    parser.add_argument(
        "--output",
        type=str,
        nargs="?",
        default="./DMP_all_scores"  #保存图片的文件夹路径
    )
    parser.add_argument(
        "--batch_size",
        type=int,
        default=1
    )
    parser.add_argument(
        "--num_workers",
        type=int,
        default=1
    )
    parser.add_argument(
        "--device",
        type=str,
        default="cuda",
    )
    args = parser.parse_args()
    if args.device is None:
        device = torch.device('cuda' if (torch.cuda.is_available()) else 'cpu')
    else:
        device = torch.device(args.device)
    clip_score = calculate_clip_score(args.texts, args.images, args.batch_size, device, args.num_workers, args.output)
    print('CLIP-score: ', clip_score)

if __name__ == '__main__':
    main()