tf_session_infer.py 5.65 KB
Newer Older
root's avatar
root committed
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
import tensorflow.compat.v1 as tf
import csv
from copy import deepcopy
import time
import json
import numpy as np
import string
import random
import logging
import os
from datetime import datetime

# 配置日志记录器


tf.disable_v2_behavior()
TF_XLA_FLAGS="--tf_xla_auto_jit=1"

DTYPE = {
    'float32': tf.float32, 
    'int32': tf.int32, 
    'int64': tf.int64,
    'string': tf.string
}


def create_directory(path):
    if not os.path.exists(path):
        os.makedirs(path)
        print(f"Directory '{path}' created.")
    else:
        print(f"Directory '{path}' already exists.")


def read_csv_data(file_path):
    with open(file_path, 'r') as f:
        reader = csv.reader(f)
        next(reader)
        datas = list(reader)
    for data in datas:
        data[2] = data[2][1:-1].split(",")
    
    return datas


def load_graph(model_file):
    with tf.gfile.GFile(model_file, "rb") as f:
        graph_def = tf.GraphDef()
        graph_def.ParseFromString(f.read())
    
    with tf.Graph().as_default() as graph:
        tf.import_graph_def(graph_def, name="")
    
    return graph
 
    
def generate_graph_datas(graph, tensors, batch_size):
    graph_datas = {}
    graph_names = {}
    for tensor in tensors:
        graph_names[tensor[1].split(':')[0]] = graph.get_tensor_by_name(tensor[1])
        _dtype = DTYPE[tensor[-1]]
        shapes = deepcopy(tensor[2])
        if shapes == ['']:
            graph_datas[graph.get_tensor_by_name(tensor[1])] = tf.constant(3.14, dtype=_dtype)
            continue
        if shapes[0] == "None":
            shapes[0] = batch_size
        for i in range(len(shapes)):
            if shapes[i] == "None":
                shapes[i] = batch_size
            if shapes[i] != "":
                shapes[i] = int(shapes[i])
        
        shapes = tuple([i for i in shapes])
       
        if tensor[-1] == "int32":
            random_tensor = tf.random.uniform(shape=shapes, minval=0, maxval=10, dtype=_dtype)

        elif tensor[-1] == "int64":
            random_tensor = tf.random.uniform(shape=shapes, minval=0, maxval=10, dtype=_dtype)
    
        elif tensor[-1] == "string":
            # 生成字符串张量
            batch_size = shapes[0]
            sequence_length = shapes[1] if len(shapes) > 1 else 1
            random_tensor = tf.constant([["example_string"] * sequence_length] * batch_size, dtype=tf.string)
        else:
            random_tensor = tf.random.normal(shape=shapes, mean=0.0, stddev=1.0, dtype=_dtype)

        
        graph_datas[graph.get_tensor_by_name(tensor[1])] = random_tensor

    return graph_datas, graph_names       


def load_datasets(datasets_path):
    with open(datasets_path, 'r') as f:
        datasets = json.load(f)
    return datasets


def main():
    model = "model_1"
    model_dir = "./models"
    random_flag = False
    
    logs_dir = os.path.join(model_dir, f"{model}/logs")
    create_directory(logs_dir)
    
    logging.basicConfig(filename=os.path.join(logs_dir, f"TF-{model}-{datetime.now().strftime('%Y%m%d%H%M%S')}.log"),
                        filemode='a', 
                        format='%(asctime)s - %(levelname)s - %(message)s',
                        level=logging.INFO)
    
    input_tensors_path = os.path.join(model_dir, f'{model}/input_tensors.csv')
    output_tensors_path = os.path.join(model_dir, f'{model}/output_tensors.csv')
    model_path = os.path.join(model_dir, f'{model}/model.pb')
    
    
    input_tensors = read_csv_data(input_tensors_path)
    output_tensors = read_csv_data(output_tensors_path)
    
    batch_size = [1,2,4,8,16,32,64,128,256,512,1024,2048]   
    
    with tf.device('/gpu:0'):
        graph = load_graph(model_path)
        with graph.as_default():
            with tf.Session(graph=graph) as sess:
                for bs in batch_size:
                    if random_flag:
                        print("random input data")
                        input_datasets, _ = generate_graph_datas(graph, input_tensors, bs)
                        _, output_names = generate_graph_datas(graph, output_tensors, bs)

                        input_values = sess.run(list(input_datasets.values()))
                        feed_dict = dict(zip(input_datasets.keys(), input_values))                             
                    else:
                        input_datasets_path = os.path.join(model_dir, f"{model}/dataset/input_tensor_datas_{bs}.json")
                        output_datasets_path = os.path.join(model_dir, f"{model}/dataset/output_tensor_datas_{bs}.json")
                        
                        print(f"Load input data from json file: {input_datasets_path}")
                        
                        input_datasets = load_datasets(input_datasets_path)
                        output_datasets = load_datasets(output_datasets_path)
                        input_tensors_dict = {graph.get_tensor_by_name(k): tf.convert_to_tensor(v, dtype=graph.get_tensor_by_name(k).dtype) for k, v in input_datasets.items()}
                        output_names = {k: graph.get_tensor_by_name(k) for k in output_datasets.keys()}
                        
                        input_values = sess.run(list(input_tensors_dict.values()))
                        feed_dict = dict(zip(input_tensors_dict.keys(), input_values))
                    for i in range(130):
                        if i < 30:
                            times = time.time()
                        sess.run(output_names, feed_dict=feed_dict)
                    QPS = 100/(time.time() - times) * bs
                    logging.info(f"*******batch_size: {bs}  *******QPS: {QPS}")
                    print(f"*******batch_size: {bs}  *******QPS: {QPS}")


if __name__ == '__main__':
    
    main()