bench.py 6.86 KB
Newer Older
sunzhq2's avatar
init  
sunzhq2 committed
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
import multiprocessing as mp
import os
import random
import sys
import time
from typing import Any, AsyncIterable, Callable, Dict, Iterable, List

import backoff
import grpc
import pandas as pd
from tqdm import tqdm

from llm_perf.utils.logger import logger
from llm_perf.utils.reporter import ReportType

sys.path.append(os.path.dirname(os.path.dirname(os.path.realpath(__file__))))

from llm_perf.server import server_pb2, server_pb2_grpc
from llm_perf.server.pb import deserialize_value, serialize_value


@backoff.on_exception(backoff.expo, Exception, factor=0.1, max_value=1, max_tries=3)
def gen_stream_request(
    stub: server_pb2_grpc.InferenceStub,
    index: int,
    prompt: str,
    min_new_tokens: int,
    max_new_tokens: int,
    top_p: float,
    top_k: int,
    get_input_logits: int,
) -> Iterable[server_pb2.InferenceResponse]:
    req = server_pb2.InferenceRequest(
        req_id=str(index) + "_" + str(int(time.time())),
        inputs={
            "input_messages": serialize_value(prompt),
            "min_new_tokens": serialize_value(min_new_tokens),
            "max_new_tokens": serialize_value(max_new_tokens),
            "top_p": serialize_value(top_p),
            "top_k": serialize_value(top_k),
            "get_input_logits": serialize_value(get_input_logits),
        },
    )
    for res in stub.StreamingInference(req, wait_for_ready=False):
        yield res


def format_question(line) -> str:
    question = line["question"]
    for choice in ["A", "B", "C", "D"]:
        question += f"\n{choice}. {line[f'{choice}']}"
    question += "\n答案:"
    return question


def bench_accuracy(stub, workload: Dict[str, Any], result_queue: mp.Queue):
    dataset: pd.DataFrame = pd.read_csv(workload["dataset"])
    result_queue.put("@start")
    for row_index, row in tqdm(dataset.iterrows(), total=len(dataset)):
        question = format_question(row)
        output_messages = ""
        perplexity_list: List[float] = []
        for res in gen_stream_request(
            stub,
            index=0,
            prompt=question,
            min_new_tokens=workload["min_new_tokens"],
            max_new_tokens=workload["max_new_tokens"],
            top_p=0,
            top_k=1,  # use greedy search for accuracy bench
            get_input_logits=1,
        ):
            res = {k: deserialize_value(v) for k, v in res.outputs.items()}
            if res["choice"]["message"] != "":
                output_messages = res["choice"]["message"]
            perplexity = res["choice"]["perplexity"]
            logits_dump = res["choice"]["logits_dump"]
            if not logits_dump:
                perplexity_list.append(perplexity)

        print("*"*150)
        logger.info("question: ")
        print(question)
        print("*"*150)
        logger.info("answer: ")
        print(output_messages)
        print("*"*150)

        result = {
            "output_message": output_messages,
            "perplexity": perplexity_list, 
            "logits_dump": logits_dump
        }
        result_queue.put(result)


def bench_performance(
    stub,
    index: int,
    workload: Dict[str, Any],
    input_tokens: int,
    result_queue: mp.Queue,
):
    result_queue.put("@start")

    accum_time = 0
    perf_time: int = workload["perf_time"] * int(1e9)

    while accum_time < perf_time:
        # make fake prompt, actual input_ids len may exceed input_tokens
        prompt = "我" * input_tokens
    
        st = time.perf_counter_ns()
        first_token_latency = 0

        min_new_tokens = workload["output_tokens"]
        max_new_tokens = workload["output_tokens"]

        output_messages: str = ""
        wait_time = []
        model_time = []
        post_process_time = []

        for res in gen_stream_request(
            stub,
            index=index,
            prompt=prompt,
            min_new_tokens=min_new_tokens,
            max_new_tokens=max_new_tokens,
            top_p=0,
            top_k=1,
            get_input_logits=0,
        ):
            res = {k: deserialize_value(v) for k, v in res.outputs.items()}
            if res["choice"]["message"] != "":
                output_messages = res["choice"]["message"]
            wait_time.append(res["choice"]["wait_time"])
            model_time.append(res["choice"]["model_time"])
            post_process_time.append(res["choice"]["post_process_time"])
            if first_token_latency == 0:
                first_token_latency = (time.perf_counter_ns() - st) / 1e6

        use_time = time.perf_counter_ns() - st
        accum_time += use_time

        # record context and decode len
        prompt_tokens = res["usage"]["prompt_tokens"]
        completion_tokens = res["usage"]["completion_tokens"]

        # seperate context and decode latency
        if completion_tokens > 1:
            per_token_latency = (use_time - first_token_latency) / (completion_tokens - 1) / 1e6
        else:
            per_token_latency = first_token_latency / 1e6

        context_wait_time = wait_time[0]
        context_model_time = model_time[0]
        context_postprocess_time = post_process_time[0]

        decode_wait_time = sum(wait_time[1:]) / len(wait_time[1:])
        decode_model_time = sum(model_time[1:]) / len(model_time[1:])
        decode_postprocess_time = sum(post_process_time[1:]) / len(post_process_time[1:])

        result = {
            "prompt_tokens": prompt_tokens,
            "completion_tokens": completion_tokens,
            "output_message": output_messages,
            "first_token_latency": first_token_latency,
            "per_token_latency": per_token_latency,

            "context_wait_time": context_wait_time, 
            "context_model_time": context_model_time, 
            "context_postprocess_time": context_postprocess_time, 

            "decode_wait_time": decode_wait_time, 
            "decode_model_time": decode_model_time, 
            "decode_postprocess_time": decode_postprocess_time, 
        }

        logger.debug(f"bench_{index} prompt response: {result}")
        result_queue.put(result)

def benchmark(
    index: int,
    start_wait: int, 
    workload: Dict[str, Any],
    report_type: ReportType,
    input_tokens: int,
    result_queue: mp.Queue,
    host, port
):
    with grpc.insecure_channel(f"{host}:{port}") as channel:
        stub = server_pb2_grpc.InferenceStub(channel)
        logger.debug(f"{report_type.name} bench_{index} start")
        
        # wait for start_wait seconds
        time.sleep(1 * start_wait)
        
        try:
            if report_type == ReportType.ACCURACY:
                bench_accuracy(stub, workload, result_queue)
            elif report_type == ReportType.PERFORMANCE:
                bench_performance(stub, index, workload, input_tokens, result_queue)
        except Exception as e:
            logger.error(f"{report_type.name} bench_{index} error: {e}")
            raise e

    logger.debug(f"{report_type.name} bench_{index} finish")
    result_queue.put(None)