bench_model.py 10.6 KB
Newer Older
sunzhq2's avatar
init  
sunzhq2 committed
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
import os
import sys
import time
import pathlib
import argparse
from tqdm import tqdm
import numpy as np
import prettytable as pt
import csv
import importlib
import json
import random

FILE_DIR = pathlib.Path(__file__).parent.absolute()
# ${prj_root}/byte_infer_perf
INFER_ROOT_DIR = FILE_DIR.parent
CUR_DIR = pathlib.Path.cwd().absolute()
os.chdir(INFER_ROOT_DIR)


sys.path.insert(0, str(INFER_ROOT_DIR))

from llm_perf.utils.logger import logger, setup_logger


def parse_args():
    default_model_config = FILE_DIR.joinpath(
        "model_zoo", 
        "mixtral-torch-bf16-8x22b.json"
    ).absolute()

    parser = argparse.ArgumentParser()
    parser.add_argument("--hardware_type", type=str, default="GPU")

    # model_info
    parser.add_argument("--model_config", type=str, default=default_model_config)   

    # deploy_config
    parser.add_argument("--tp_size", type=int, default=8)
    parser.add_argument("--max_batch_size", type=int, default=8)

    # realization_version, mapping to:
    # 1. engine_type: tp_engine, pp_engine, ...
    # 2. model realization info,
    parser.add_argument("--model_version", type=str, default="default")
    parser.add_argument("--infer_dtype", type=str, default="bfloat16")

    # perf config, using default config
    parser.add_argument("--perf_config", type=str, default=None)

    # feature control
    parser.add_argument("--random_seed", type=int, default=1)
    parser.add_argument("--log_model", action="store_true")


    parser.add_argument("--workspace", type=str, default=None)
    parser.add_argument("--log_level", type=str, default="info")

    return parser.parse_args()


def perf_engine(xpu_config, workspace):
    hardware_type = xpu_config["hardware_type"]
    setup = importlib.import_module(
        ".setup", package=f"llm_perf.backends.{hardware_type}"
    )
    logger.info(f"import setup: {setup}")

    xpu_config["sku_name"] = setup.get_device_name()
    with open(workspace.joinpath("config.json"), "w") as f:
        json.dump(xpu_config, f, indent=4)



    random_seed = xpu_config["feature_config"]["random_seed"]
    log_model = xpu_config["feature_config"]["log_model"]

    max_batch_size = xpu_config["deploy_config"]["max_batch_size"]


    # create mp_engine (currently only support tp)
    #   1. tp_size
    #   2. max_batch_size
    engine = setup.get_engine(xpu_config)




    def update_template(mode, batch_size, seq_len):
        if mode == "context":
            input_template = {
                "is_context": True, 

                "input_ids": [[random.randint(1000, 5000) for _ in range(seq_len)] for _ in range(batch_size)], 
                "position_ids": [[i for i in range(seq_len)] for _ in range(batch_size)], 
                "attention_mask": [[1 for _ in range(seq_len)] for _ in range(batch_size)], 

                "valid_slot_ids": [i for i in range(batch_size)], 
                "all_q_len": [seq_len for _ in range(batch_size)], 
                "all_kv_len": [seq_len for _ in range(batch_size)], 

                "get_input_logits": False, 
                "workspace": workspace,
                "log": log_model, 
                "override_hidden_states": True,
                "random_seed": random_seed
            }
        elif mode == "decode":
            input_template = {
                "is_context": False, 

                "input_ids": [[random.randint(1000, 5000)] for _ in range(batch_size)], 
                "position_ids": [[seq_len] for _ in range(batch_size)], 
                "attention_mask": [[1] for _ in range(batch_size)], 

                "valid_slot_ids": [i for i in range(batch_size)], 
                "all_q_len": [1 for _ in range(batch_size)], 
                "all_kv_len": [seq_len for _ in range(batch_size)], 
                
                "get_input_logits": False, 
                "workspace": workspace,
                "log": log_model, 
                "override_hidden_states": True,
                "random_seed": random_seed
            }
        return input_template


    # warmup
    num_warm_iter = 10
    input_template = update_template("context", 1, 1024)

    start_time = time.perf_counter_ns()
    for _ in range(num_warm_iter):
        engine.mp_forward(input_template)
    duration_s = round((time.perf_counter_ns() - start_time) / 1e9, 3)
    logger.info(f"warmup cost: {duration_s}s")


    def results_to_csv(file_path, results):
        batch_size_set = sorted(results.keys())
        seq_len_set = set()
        for batch_size in batch_size_set:
            for seq_len in results[batch_size].keys():
                seq_len_set.add(seq_len)
        seq_len_set = sorted(list(seq_len_set))

        with open(file_path, "w") as f:
            csv_writer = csv.writer(f)
            header = ["batch_size\n----------\nseq_len"]
            for batch_size in batch_size_set:
                header.append(f"{batch_size}")
            csv_writer.writerow(header)

            for seq_len in seq_len_set:
                row = [f"{seq_len}"]
                for batch_size in batch_size_set:
                    row.append(f"{results[batch_size][seq_len]}")
                csv_writer.writerow(row)


    log_results = []
    if xpu_config["perf_config"]["perf_context"]:
        batch_size_list = [1]
        seq_len_list = xpu_config["perf_config"]["seq_len_list"]

        context_results = {}
        for batch_size in batch_size_list:
            context_results[batch_size] = {}
            for seq_len in seq_len_list:
                input_template = update_template("context", 1, seq_len)

                start_iters = 2
                test_iter = 0
                duration_ms = 0.
                while duration_ms < 5000. and test_iter < 100:
                    result = engine.mp_forward(input_template)
                    if start_iters > 0:
                        start_iters -= 1
                        continue
                    test_iter += 1
                    duration_ms += result["duration_ms"]

                avg_duration_ms = round(duration_ms / test_iter, 3)
                context_results[batch_size][seq_len] = avg_duration_ms
                log_results.append(f"context, batch_size={batch_size}, seq_len={seq_len}, avg_duration_ms={avg_duration_ms}")
                if log_model:
                    log_path = workspace.joinpath("rank_0", "run.log")
                    if log_path.exists():
                        lines = workspace.joinpath("rank_0", "run.log").read_text().splitlines()
                        log_results[-1] += f", {lines[0]}"
                print(log_results[-1])
        results_to_csv(workspace.joinpath("context_perf.csv"), context_results)


    if xpu_config["perf_config"]["perf_decode"]:
        batch_size_list = xpu_config["perf_config"]["batch_size_list"]
        seq_len_list = xpu_config["perf_config"]["seq_len_list"]

        decode_results = {}

        for batch_size in batch_size_list:
            if batch_size > max_batch_size:
                continue
            decode_results[batch_size] = {}
            for seq_len in seq_len_list:
                input_template = update_template("decode", batch_size, seq_len)

                start_iters = 2
                test_iter = 0
                duration_ms = 0.
                while duration_ms < 5000. and test_iter < 100:
                    result = engine.mp_forward(input_template)
                    if start_iters > 0:
                        start_iters -= 1
                        continue
                    test_iter += 1
                    duration_ms += result["duration_ms"]

                avg_duration_ms = round(duration_ms / test_iter, 3)

                decode_results[batch_size][seq_len] = avg_duration_ms

                log_results.append(f"decode, batch_size={batch_size}, seq_len={seq_len}, avg_duration_ms={avg_duration_ms}")
                if log_model:
                    log_path = workspace.joinpath("rank_0", "run.log")
                    if log_path.exists():
                        lines = workspace.joinpath("rank_0", "run.log").read_text().splitlines()
                        log_results[-1] += f", {lines[0]}"
                print(log_results[-1])

        results_to_csv(workspace.joinpath("decode_perf.csv"), decode_results)

    # release subprocess resources manually to enable auto garbage collection
    engine.clean_subprocess()

    with open(workspace.joinpath("output.txt"), "w") as f:
        for log in log_results:
            f.write(log + "\n")
    print("\n".join(log_results))


if __name__ == '__main__':
    args = parse_args()
    setup_logger(args.log_level)

    hardware_type = args.hardware_type
    model_config_path = pathlib.Path(args.model_config)
    if not model_config_path.is_absolute():
        model_config_path = CUR_DIR / model_config_path
    if not model_config_path.exists():
        logger.error(f"model_config_path not exist: {model_config_path}")
        sys.exit(-1)

    model_name = model_config_path.stem.split("-")
    model_name = "-".join([model_name[0], model_name[-1]])

    tp_size = args.tp_size
    max_batch_size = args.max_batch_size
    model_version = args.model_version

    if args.workspace is not None:
        workspace = pathlib.Path(args.workspace)
        if not workspace.is_absolute():
            workspace = CUR_DIR / workspace
    else:
        workspace = INFER_ROOT_DIR.joinpath(
            "llm_perf", "reports", 
            hardware_type, model_config_path.stem, 
            "bench_model"
        )
    if not workspace.exists():
        workspace.mkdir(parents=True, exist_ok=True)


    logger.info(f"hardware_type: {hardware_type}")
    logger.info(f"model_config: {model_config_path}")

    logger.info(f"infer_dtype: {args.infer_dtype}")
    logger.info(f"tp_size: {tp_size}")
    logger.info(f"max_batch_size: {max_batch_size}")
    logger.info(f"model_version: {model_version}")
    logger.info(f"workspace: {workspace}")
    print("\n\n")


    xpu_config = {
        "hardware_type": hardware_type,
        "sku_name": "", 
        "model_name": model_name, 
        "deploy_config": {
            "impl_framework": "bytemlperf", 
            "impl_version": model_version, 
            "infer_dtype": args.infer_dtype,
            "tp_size": tp_size,
            "max_batch_size": max_batch_size,
        }, 
        "model_config": json.loads(model_config_path.read_text()), 
        "perf_config": {
            "perf_context": True, 
            "perf_decode": True,
            "batch_size_list": [1, 4, 8, 16, 24, 32],
            "seq_len_list": [1024, 2048, 4096, 8192]
        }, 
        "feature_config": {
            "random_seed": args.random_seed,
            "log_model": args.log_model,
        }, 
        "tp_size": tp_size,
        "max_batch_size": max_batch_size,
    }

    perf_engine(xpu_config, workspace)