sampling_utils.py 5.88 KB
Newer Older
suily's avatar
suily committed
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
import math
import torch
from scipy import integrate

from ...util import append_dims


class NoDynamicThresholding:
    def __call__(self, uncond, cond, scale, **kwargs):
        return uncond + scale * (cond - uncond)

class RescaleThresholding:
    def __init__(self, phi=0.7):
        self.phi = phi

    def __call__(self, uncond, cond, scale, **kwargs):
        denoised_cfg = uncond + scale * (cond - uncond)
        sigma_pos, sigma_cfg = cond.std(), denoised_cfg.std()
        factor = self.phi * sigma_pos / sigma_cfg + (1 - self.phi)
        denoised_final = denoised_cfg * factor
        return denoised_final
    
class DynamicThresholding:
    Modes = ["Constant", "Linear Up", "Linear Down", "Half Cosine Up", "Half Cosine Down", "Power Up", "Power Down", "Cosine Down","Cosine Up"]
    def __init__(self, interpret_mode, 
                 scale_min = 3,
                 mimic_interpret_mode = 'Constant',
                 mimic_scale = 3, 
                 mimic_scale_min = 3, 
                 threshold_percentile = 1.0,
                 phi = 1.0,
                 separate_feature_channels = True,
                 measure = 'AD',
                 scaling_startpoint = 'ZERO',
                 ):
        assert interpret_mode in self.Modes
        assert mimic_interpret_mode in self.Modes
        assert measure in ['AD', 'STD']
        assert scaling_startpoint in ['ZERO', 'MEAN']
        self.mode = interpret_mode
        self.mimic_mode = mimic_interpret_mode
        self.scale_min = scale_min
        self.mimic_scale = mimic_scale
        self.mimic_scale_min = mimic_scale_min
        self.threshold_percentile = threshold_percentile
        self.phi = phi
        self.separate_feature_channels = separate_feature_channels
        self.measure = measure
        self.scaling_startpoint = scaling_startpoint
    
    def interpret_scale(self, mode, scale, scale_min, step, num_steps):
        """
        num_steps = 50
        step from 0 to 50.
        """
        scale -= scale_min
        frac = step / num_steps
        if mode == 'Constant':
            pass
        elif mode == "Linear Up":
            scale *= frac
        elif mode == "Linear Down":
            scale *= 1.0 - frac
        elif mode == "Half Cosine Up":
            scale *= 1.0 - math.cos(frac)
        elif mode == "Half Cosine Down":
            scale *= math.cos(frac)
        elif mode == "Cosine Down":
            scale *= math.cos(frac * 1.5707)
        elif mode == "Cosine Up":
            scale *= 1.0 - math.cos(frac * 1.5707)
        elif mode == "Power Up":
            scale *= math.pow(frac, 2.0)
        elif mode == "Power Down":
            scale *= 1.0 - math.pow(frac, 2.0)
        scale += scale_min
        return scale
    
    def __call__(self, uncond, cond, scale, step, num_steps):
        cfg_scale = self.interpret_scale(self.mode, scale, self.scale_min, step, num_steps)
        mimic_cfg_scale = self.interpret_scale(self.mimic_mode, self.mimic_scale, self.mimic_scale_min, step, num_steps)

        x = uncond + cfg_scale*(cond - uncond)
        mimic_x = uncond + mimic_cfg_scale*(cond - uncond)  

        x_flattened = x.flatten(2)
        mimic_x_flattened = mimic_x.flatten(2)
        
        if self.scaling_startpoint == 'MEAN':
            x_means = x_flattened.mean(dim=2, keepdim = True)
            mimic_x_means = mimic_x_flattened.mean(dim=2, keepdim = True)
            x_centered = x_flattened - x_means
            mimic_x_centered = mimic_x_flattened - mimic_x_means
        else:
            x_centered = x_flattened
            mimic_x_centered = mimic_x_flattened
            
        if self.separate_feature_channels:
            if self.measure == 'AD':
                x_scaleref = torch.quantile(x_centered.abs(), self.threshold_percentile, dim=2, keepdim = True)
                mimic_x_scaleref = mimic_x_centered.abs().max(dim=2, keepdim = True).values
            elif self.measure == 'STD':
                x_scaleref = x_centered.std(dim=2, keepdim = True)
                mimic_x_scaleref = mimic_x_centered.std(dim=2, keepdim = True)
        else:
            if self.measure == 'AD':
                x_scaleref = torch.quantile(x_centered.abs(), self.threshold_percentile)
                mimic_x_scaleref = mimic_x_centered.abs().max()
            elif self.measure == 'STD':
                x_scaleref = x_centered.std()
                mimic_x_scaleref = mimic_x_centered.std()
        
        if self.measure == 'AD':
            max_scaleref = torch.maximum(x_scaleref, mimic_x_scaleref)
            x_clamped = x_centered.clamp(-max_scaleref, max_scaleref)
            x_renormed = x_clamped * (mimic_x_scaleref / max_scaleref)
        elif self.measure == 'STD':
            x_renormed = x_centered * (mimic_x_scaleref / x_scaleref)
        
        if self.scaling_startpoint == 'MEAN':
            x_dyn = x_means + x_renormed
        else:
            x_dyn = x_renormed
        x_dyn = x_dyn.unflatten(2, x.shape[2:])
        return self.phi*x_dyn + (1-self.phi)*x
        

def linear_multistep_coeff(order, t, i, j, epsrel=1e-4):
    if order - 1 > i:
        raise ValueError(f"Order {order} too high for step {i}")

    def fn(tau):
        prod = 1.0
        for k in range(order):
            if j == k:
                continue
            prod *= (tau - t[i - k]) / (t[i - j] - t[i - k])
        return prod

    return integrate.quad(fn, t[i], t[i + 1], epsrel=epsrel)[0]


def get_ancestral_step(sigma_from, sigma_to, eta=1.0):
    if not eta:
        return sigma_to, 0.0
    sigma_up = torch.minimum(
        sigma_to,
        eta
        * (sigma_to**2 * (sigma_from**2 - sigma_to**2) / sigma_from**2) ** 0.5,
    )
    sigma_down = (sigma_to**2 - sigma_up**2) ** 0.5
    return sigma_down, sigma_up


def to_d(x, sigma, denoised):
    return (x - denoised) / append_dims(sigma, x.ndim)


def to_neg_log_sigma(sigma):
    return sigma.log().neg()


def to_sigma(neg_log_sigma):
    return neg_log_sigma.neg().exp()