"docs/source/en/add_new_model.mdx" did not exist on "207594be81b8e5a8589c8b11c3b236924555d806"
loss.py 6.71 KB
Newer Older
suily's avatar
suily committed
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
import os
import copy
from typing import List, Optional, Union

import numpy as np
import torch
import torch.nn as nn
import torch.nn.functional as F
from omegaconf import ListConfig

from ...util import append_dims, instantiate_from_config
from ...modules.autoencoding.lpips.loss.lpips import LPIPS
from ...modules.diffusionmodules.wrappers import OPENAIUNETWRAPPER
from ...util import get_obj_from_str, default
from ...modules.diffusionmodules.discretizer import generate_roughly_equally_spaced_steps, sub_generate_roughly_equally_spaced_steps


class StandardDiffusionLoss(nn.Module):
    def __init__(
        self,
        sigma_sampler_config,
        type="l2",
        offset_noise_level=0.0,
        batch2model_keys: Optional[Union[str, List[str], ListConfig]] = None,
    ):
        super().__init__()

        assert type in ["l2", "l1", "lpips"]

        self.sigma_sampler = instantiate_from_config(sigma_sampler_config)

        self.type = type
        self.offset_noise_level = offset_noise_level

        if type == "lpips":
            self.lpips = LPIPS().eval()

        if not batch2model_keys:
            batch2model_keys = []

        if isinstance(batch2model_keys, str):
            batch2model_keys = [batch2model_keys]

        self.batch2model_keys = set(batch2model_keys)

    def __call__(self, network, denoiser, conditioner, input, batch):
        cond = conditioner(batch)
        additional_model_inputs = {
            key: batch[key] for key in self.batch2model_keys.intersection(batch)
        }

        sigmas = self.sigma_sampler(input.shape[0]).to(input.device)
        noise = torch.randn_like(input)
        if self.offset_noise_level > 0.0:
            noise = noise + append_dims(
                torch.randn(input.shape[0]).to(input.device), input.ndim
            ) * self.offset_noise_level
            noise = noise.to(input.dtype)
        noised_input = input.float() + noise * append_dims(sigmas, input.ndim)
        model_output = denoiser(
            network, noised_input, sigmas, cond, **additional_model_inputs
        )
        w = append_dims(denoiser.w(sigmas), input.ndim)
        return self.get_loss(model_output, input, w)

    def get_loss(self, model_output, target, w):
        if self.type == "l2":
            return torch.mean(
                (w * (model_output - target) ** 2).reshape(target.shape[0], -1), 1
            )
        elif self.type == "l1":
            return torch.mean(
                (w * (model_output - target).abs()).reshape(target.shape[0], -1), 1
            )
        elif self.type == "lpips":
            loss = self.lpips(model_output, target).reshape(-1)
            return loss


class LinearRelayDiffusionLoss(StandardDiffusionLoss):
    def __init__(
        self,
        sigma_sampler_config,
        type="l2",
        offset_noise_level=0.0,
        partial_num_steps=500,
        blurring_schedule='linear',
        batch2model_keys: Optional[Union[str, List[str], ListConfig]] = None,
    ):
        super().__init__(
            sigma_sampler_config,
            type=type,
            offset_noise_level=offset_noise_level,
            batch2model_keys=batch2model_keys,
        )

        self.blurring_schedule = blurring_schedule
        self.partial_num_steps = partial_num_steps

    
    def __call__(self, network, denoiser, conditioner, input, batch):
        cond = conditioner(batch)
        additional_model_inputs = {
            key: batch[key] for key in self.batch2model_keys.intersection(batch)
        }
        lr_input = batch["lr_input"]

        rand = torch.randint(0, self.partial_num_steps, (input.shape[0],))
        sigmas = self.sigma_sampler(input.shape[0], rand).to(input.dtype).to(input.device)
        noise = torch.randn_like(input)
        if self.offset_noise_level > 0.0:
            noise = noise + append_dims(
                torch.randn(input.shape[0]).to(input.device), input.ndim
            ) * self.offset_noise_level
            noise = noise.to(input.dtype)
        rand = append_dims(rand, input.ndim).to(input.dtype).to(input.device)
        if self.blurring_schedule == 'linear':
            blurred_input = input * (1 - rand / self.partial_num_steps) + lr_input * (rand / self.partial_num_steps)
        elif self.blurring_schedule == 'sigma':
            max_sigmas = self.sigma_sampler(input.shape[0], torch.ones(input.shape[0])*self.partial_num_steps).to(input.dtype).to(input.device)
            blurred_input = input * (1 - sigmas / max_sigmas) + lr_input * (sigmas / max_sigmas)
        elif self.blurring_schedule == 'exp':
            rand_blurring = (1 - torch.exp(-(torch.sin((rand+1) / self.partial_num_steps * torch.pi / 2)**4))) / (1 - torch.exp(-torch.ones_like(rand)))
            blurred_input = input * (1 - rand_blurring) + lr_input * rand_blurring
        else:
            raise NotImplementedError
        noised_input = blurred_input + noise * append_dims(sigmas, input.ndim)
        model_output = denoiser(
            network, noised_input, sigmas, cond, **additional_model_inputs
        )
        w = append_dims(denoiser.w(sigmas), input.ndim)
        return self.get_loss(model_output, input, w)

class ZeroSNRDiffusionLoss(StandardDiffusionLoss):

    def __call__(self, network, denoiser, conditioner, input, batch):
        cond = conditioner(batch)
        additional_model_inputs = {
            key: batch[key] for key in self.batch2model_keys.intersection(batch)
        }

        alphas_cumprod_sqrt, idx = self.sigma_sampler(input.shape[0], return_idx=True)
        alphas_cumprod_sqrt = alphas_cumprod_sqrt.to(input.device)
        idx = idx.to(input.dtype).to(input.device)
        additional_model_inputs['idx'] = idx

        noise = torch.randn_like(input)
        if self.offset_noise_level > 0.0:
            noise = noise + append_dims(
                torch.randn(input.shape[0]).to(input.device), input.ndim
            ) * self.offset_noise_level

        noised_input = input.float() * append_dims(alphas_cumprod_sqrt, input.ndim) + noise * append_dims((1-alphas_cumprod_sqrt**2)**0.5, input.ndim)
        model_output = denoiser(
            network, noised_input, alphas_cumprod_sqrt, cond, **additional_model_inputs
        )
        w = append_dims(1/(1-alphas_cumprod_sqrt**2), input.ndim) # v-pred
        return self.get_loss(model_output, input, w)
    
    def get_loss(self, model_output, target, w):
        if self.type == "l2":
            return torch.mean(
                (w * (model_output - target) ** 2).reshape(target.shape[0], -1), 1
            )
        elif self.type == "l1":
            return torch.mean(
                (w * (model_output - target).abs()).reshape(target.shape[0], -1), 1
            )
        elif self.type == "lpips":
            loss = self.lpips(model_output, target).reshape(-1)
            return loss