vits.yaml 5.47 KB
Newer Older
wxj's avatar
wxj committed
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
# This config contains the default values for training VITS model on LJSpeech dataset.
# If you want to train model on other dataset, you can change config values according to your dataset.
# Most dataset-specific arguments are in the head of the config file, see below.

# TODO: remove unnecessary arguments, refactoring

name: VITS

train_dataset: ???
validation_datasets: ???
sup_data_path: null
sup_data_types: null

phoneme_dict_path: "scripts/tts_dataset_files/ipa_cmudict-0.7b_nv23.01.txt"
heteronyms_path: "scripts/tts_dataset_files/heteronyms-052722"

# Default values from librosa.pyin
pitch_fmin: 65.40639132514966
pitch_fmax: 2093.004522404789

sample_rate: 22050
n_mel_channels: 80
n_window_size: 1024
n_window_stride: 256
n_fft: 1024
lowfreq: 0
highfreq: null
window: hann

model:
  pitch_fmin: ${pitch_fmin}
  pitch_fmax: ${pitch_fmax}

  sample_rate: ${sample_rate}
  n_mel_channels: ${n_mel_channels}
  n_window_size: ${n_window_size}
  n_window_stride: ${n_window_stride}
  n_fft: ${n_fft}
  lowfreq: ${lowfreq}
  highfreq: ${highfreq}
  window: ${window}
  mel_fmin: 0.0
  mel_fmax: null

  n_speakers: 0
  segment_size: 8192
  c_mel: 45
  c_kl: 1.
  use_spectral_norm: false

  text_normalizer:
    _target_: nemo_text_processing.text_normalization.normalize.Normalizer
    lang: en
    input_case: cased

  text_normalizer_call_kwargs:
    verbose: false
    punct_pre_process: true
    punct_post_process: true

  text_tokenizer:
    _target_: nemo.collections.common.tokenizers.text_to_speech.tts_tokenizers.IPATokenizer
    punct: true
    apostrophe: true
    pad_with_space: false
    g2p:
      _target_: nemo.collections.tts.g2p.models.i18n_ipa.IpaG2p
      phoneme_dict: ${phoneme_dict_path}
      heteronyms: ${heteronyms_path}
      phoneme_probability: 0.8
      # Relies on the heteronyms list for anything that needs to be disambiguated
      ignore_ambiguous_words: false
      use_chars: true
      use_stresses: true

  train_ds:
    dataset:
      _target_: "nemo.collections.tts.data.dataset.TTSDataset"
      manifest_filepath: ${train_dataset}
      sample_rate: ${model.sample_rate}
      sup_data_path: ${sup_data_path}
      sup_data_types: ${sup_data_types}
      n_fft: ${model.n_fft}
      win_length: ${model.n_window_size}
      hop_length: ${model.n_window_stride}
      window: ${model.window}
      n_mels: ${model.n_mel_channels}
      lowfreq: ${model.lowfreq}
      highfreq: ${model.highfreq}
      max_duration: null
      min_duration: 0.1
      ignore_file: null
      trim: False
      pitch_fmin: ${model.pitch_fmin}
      pitch_fmax: ${model.pitch_fmax}
    
    dataloader_params:
      num_workers: 8
      pin_memory: false

    batch_sampler:
      batch_size: 32
      boundaries: [32,300,400,500,600,700,800,900,1000]
      num_replicas: ${trainer.devices}
      shuffle: true

  validation_ds:
    dataset:
      _target_: "nemo.collections.tts.data.dataset.TTSDataset"
      manifest_filepath: ${validation_datasets}
      sample_rate: ${model.sample_rate}
      sup_data_path: ${sup_data_path}
      sup_data_types: ${sup_data_types}
      n_fft: ${model.n_fft}
      win_length: ${model.n_window_size}
      hop_length: ${model.n_window_stride}
      window: ${model.window}
      n_mels: ${model.n_mel_channels}
      lowfreq: ${model.lowfreq}
      highfreq: ${model.highfreq}
      max_duration: null
      min_duration: 0.1
      ignore_file: null
      trim: False
      pitch_fmin: ${model.pitch_fmin}
      pitch_fmax: ${model.pitch_fmax}

    dataloader_params:
      drop_last: false
      shuffle: false
      batch_size: 16
      num_workers: 4
      pin_memory: false

  preprocessor:
    _target_: nemo.collections.asr.parts.preprocessing.features.FilterbankFeatures
    nfilt: ${model.n_mel_channels}
    highfreq: ${model.highfreq}
    log: true
    log_zero_guard_type: clamp
    log_zero_guard_value: 1e-05
    lowfreq: ${model.lowfreq}
    n_fft: ${model.n_fft}
    n_window_size: ${model.n_window_size}
    n_window_stride: ${model.n_window_stride}
    pad_to: 1
    pad_value: 0
    sample_rate: ${model.sample_rate}
    window: ${model.window}
    normalize: null
    preemph: null
    dither: 0.0
    frame_splicing: 1
    stft_conv: false
    nb_augmentation_prob : 0
    mag_power: 1.0
    exact_pad: true
    use_grads: true

  synthesizer:
    _target_: nemo.collections.tts.modules.vits_modules.SynthesizerTrn
    inter_channels: 192
    hidden_channels: 192
    filter_channels: 768
    n_heads: 2 
    n_layers: 6
    kernel_size: 3
    p_dropout: 0.1
    resblock: "1"
    resblock_kernel_sizes: [3,7,11]
    resblock_dilation_sizes: [[1,3,5], [1,3,5], [1,3,5]]
    upsample_rates: [8,8,2,2]
    upsample_initial_channel: 512
    upsample_kernel_sizes: [16,16,4,4]
    n_speakers: ${model.n_speakers}
    gin_channels: 256 # for multi-speaker

  optim:
    _target_: torch.optim.AdamW
    lr: 2e-4
    betas: [0.9, 0.99]
    eps: 1e-9
  
    sched:
      name: ExponentialLR
      lr_decay: 0.999875

trainer:
  num_nodes: 1
  devices: 2
  accelerator: gpu
  strategy: ddp
  precision: 32
  # amp_backend: 'apex'
  # amp_level: 'O2'
  # benchmark: true
  max_epochs: -1
  accumulate_grad_batches: 1
  enable_checkpointing: false # Provided by exp_manager
  logger: false # Provided by exp_manager
  log_every_n_steps: 50
  check_val_every_n_epoch: 1

exp_manager:
  exp_dir: ???
  name: ${name}
  create_tensorboard_logger: true
  create_checkpoint_callback: true
  checkpoint_callback_params:
    monitor: loss_gen_all
    mode: min
  resume_if_exists: false
  resume_ignore_no_checkpoint: false