K100AI_pretrain.sh 5.84 KB
Newer Older
wxj's avatar
wxj committed
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
set -eux
# 多节点环境变量
# Runs the "7B" parameter model
export HSA_FORCE_FINE_GRAIN_PCIE=1
export OMP_NUM_THREADS=1
export NCCL_P2P_LEVEL=5
source /opt/dtk/env.sh
# te调用gemm需要导入hipblaslt库
export LD_LIBRARY_PATH=/data/hipblaslt-install-0904/lib:$LD_LIBRARY_PATH 

#export HIP_ALLOC_INITIALIZE=0
#export GPU_MAX_HW_QUEUES=20
export NCCL_ALGO=Ring
export NCCL_NCHANNELS_PER_PEER=8
export NCCL_MIN_NCHANNELS=20
export NCCL_MIN_P2P_NCHANNELS=8
export NCCL_IB_TIMEOUT=22
export CUDA_DEVICE_MAX_CONNECTIONS=1

export NCCL_IB_HCA=mlx5_1,mlx5_2
#export NCCL_SOCKET_IFNAME=ibs8
export NCCL_NET_GDR_LEVEL=SYS
export NCCL_NET_GDR_READ=0
#export NCCL_DEBUG=info

# 离线设置
# export HF_DATASETS_OFFLINE=1 
# export HF_HUB_OFFLINE=1 

# prof加入同步
# export GPU_FLUSH_ON_EXECUTION=1
# # 多机卡顿
# export HIP_DIRECT_DISPATCH=0

# # torchrun参数
# NNODES=1
# NODE_RANK=0
# NUM_GPUS=8
# MASTER_ADDR="172.16.1.76"
# MASTER_PORT=29500

# # 模型大小
# MODEL_SIZE=7

# # 数据集
# DATASET="[1.0,/data/nemo_dataset/oscar-1GB-llama/oscar-1GB-llama_text_document]"

# # 超参数
# MICRO_BATCH_SIZE=1
# GLOBAL_BATCH_SIZE=16 
# TRAIN_STEPS=250000 
# LR=3e-4
# MIN_LR=3e-5
# LR_WARMUP_STEPS=2000
# DROP_OUT=0.0
# WEIGHT_DECAY=0.1
# GRAD_CLIP=1
# MAX_SEQ_LEN=4096
# MAX_POSITION_EMBEDDINGS=4096

# # 设置TP和PP
# TP=4
# PP=1
# SP=False

# # 获取参数
# while [ $# -gt 0 ]
# do
# case $1 in
#    -M|--MODEL_SIZE)
#       MODEL_SIZE=$2; shift;;
#    --TP)
#       TP=$2; shift;;
#    --PP)
#       PP=$2; shift;;
#    --SP)
#       SP=$2; shift;;
#    --peft)
#       peft_scheme=$2; shift;;
#    --global_batch)
#       global_batch=$2; shift;;
#    --NNODES)
#       NNODES=$2; shift;;
#    --NODE_RANK)
#       NODE_RANK=$2; shift;;
#    --NUM_GPUS)
#       NUM_GPUS=$2; shift;;
#    --MASTER_ADDR)
#       MASTER_ADDR=$2; shift;;
#    --MASTER_PORT)
#       MASTER_PORT=$2; shift;;
#    (*)
#       echo "param is error!"
#       exit 0
#       break;;
# esac

# shift
# done

# # 模型确定
# if   [[ ${MODEL_SIZE} == 7 ]];   then HIDDEN_SIZE=4096;  NUM_HEADS=32; NUM_QUERY_GROUP=32; NUM_LAYERS=32; FFN_HIDDEN_SIZE=11008; NORM_EPS=1e-5;
# elif [[ ${MODEL_SIZE} == 13 ]];  then HIDDEN_SIZE=5120;  NUM_HEADS=40; NUM_QUERY_GROUP=40; NUM_LAYERS=40; FFN_HIDDEN_SIZE=13824; NORM_EPS=1e-5;
# elif [[ ${MODEL_SIZE} == 70 ]];  then HIDDEN_SIZE=8192;  NUM_HEADS=64; NUM_QUERY_GROUP=8;  NUM_LAYERS=80; FFN_HIDDEN_SIZE=28672; NORM_EPS=1e-5;
# elif [[ ${MODEL_SIZE} == "tiny" ]]; then HIDDEN_SIZE=128;  NUM_HEADS=4; NUM_QUERY_GROUP=4; NUM_LAYERS=4; FFN_HIDDEN_SIZE=512; NORM_EPS=1e-5;
# else echo "invalid MODEL_SIZE: ${MODEL_SIZE}"; exit 1
# fi


# 启动训练
# torchrun --nnodes $NNODES --node_rank $NODE_RANK --nproc_per_node $NUM_GPUS \
#     --master_addr $MASTER_ADDR --master_port $MASTER_PORT \
#     /workspace/NeMo-2.0.0.rc0.beta/examples/nlp/language_modeling/megatron_gpt_pretraining.py  \
#     --config-path=conf/ \
#     --config-name=megatron_gpt_config \
#     trainer.devices=${NUM_GPUS} \
#     trainer.num_nodes=${NNODES} \
#     trainer.max_epochs=null \
#     trainer.max_steps=300000 \
#     trainer.val_check_interval=300 \
#     trainer.log_every_n_steps=50 \
#     trainer.limit_val_batches=50 \
#     trainer.limit_test_batches=50 \
#     trainer.accumulate_grad_batches=1 \
#     trainer.precision=16 \
#     model.micro_batch_size=${MICRO_BATCH_SIZE} \
#     model.global_batch_size=${GLOBAL_BATCH_SIZE} \
#     model.tensor_model_parallel_size=${TP} \
#     model.pipeline_model_parallel_size=${PP} \
#     model.max_position_embeddings=${MAX_POSITION_EMBEDDINGS} \
#     model.encoder_seq_length=${MAX_POSITION_EMBEDDINGS} \
#     model.hidden_size=${HIDDEN_SIZE} \
#     model.ffn_hidden_size=${FFN_HIDDEN_SIZE} \
#     model.num_layers=${NUM_LAYERS} \
#     model.num_attention_heads=${NUM_HEADS} \
#     model.init_method_std=0.021 \
#     model.hidden_dropout=${DROP_OUT} \
#     model.layernorm_epsilon=${NORM_EPS} \
#     model.data.data_prefix=${DATASET} \
#     model.data.num_workers=2 \
#     model.data.seq_length=${MAX_SEQ_LEN} \
#     model.data.splits_string=\'949,50,1\' \
#     model.optim.name=fused_adam \
#     model.optim.lr=${LR} \
#     model.optim.betas=[0.9,0.95] \
#     model.optim.weight_decay=${WEIGHT_DECAY} \
#     model.optim.sched.name=CosineAnnealing \
#     model.optim.sched.warmup_steps=750 \
#     model.optim.sched.constant_steps=80000 \
#     model.optim.sched.min_lr=${MIN_LR} \
#     model.tokenizer.type=Llama2Tokenizer \
#     model.tokenizer.model=/data/Megatron_LM/llama/tokenizer.model \
#     model.num_query_groups=${NUM_QUERY_GROUP} \
#     model.position_embedding_type=rope \
#     model.normalization=rmsnorm 
    


    # model.tokenizer.vocab_file=gpt2-vocab.json \
    # model.tokenizer.merge_file=gpt2-merges.txt \


# TOKENIZER_TYPE=Llama2Tokenizer
# TOKENIZER_MODEL=/data/Megatron_LM/llama/tokenizer.model
DATASET="[1.0,/data/nemo_dataset/oscar-1GB-llama/oscar-1GB-llama_text_document]"

export HIP_VISIBLE_DEVICES=0,1,2,3,4,5,6,7
# export NVTE_FLASH_ATTN=1 # 走autlass
export NVTE_FLASH_ATTN_TRITON=1 # 走triton_fa

python ./megatron_gpt_pretraining.py  \
    --config-path=conf/ \
    --config-name=megatron_gpt_config \
    trainer.devices=8 \
    trainer.num_nodes=1 \
    trainer.precision=bf16 \
    model.micro_batch_size=1 \
    model.global_batch_size=60 \
    model.tensor_model_parallel_size=2 \
    model.pipeline_model_parallel_size=2 \
    model.sequence_parallel=True \
    model.encoder_seq_length=4096 \
    model.num_layers=32 \
    model.hidden_size=4096 \
    model.ffn_hidden_size=11008 \
    model.num_attention_heads=32 \
    model.max_position_embeddings=4096 \
    model.num_query_groups=null \
    model.mcore_gpt=False \
    model.transformer_engine=False \
    model.fp8=False \
    model.ub_tp_comm_overlap=False \
    model.use_flash_attention=True \
    model.data.seq_length=4096

# model.mcore_gpt=True \
    # model.transformer_engine=True \