preprocess_data_nmt.py 3.85 KB
Newer Older
1
2
3
4
5
6
7
8
9
10
11
12
13
# Copyright (c) 2022, NVIDIA CORPORATION. All rights reserved.

"""Processing nmt data for finetuning."""

import argparse
import json
import multiprocessing
import os
import sys
sys.path.append(os.path.abspath(os.path.join(os.path.dirname(__file__),
                                             os.path.pardir)))
import time
import torch
liangjing's avatar
liangjing committed
14
15
from megatron.training.tokenizer import build_tokenizer
from megatron.core.datasets import indexed_dataset
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84


class Encoder(object):
    def __init__(self, args):
        self.args = args

    def initializer(self):
        # Use Encoder class as a container for global data
        Encoder.tokenizer = build_tokenizer(self.args)

    def encode(self, text):
        ids = {}
        ids = Encoder.tokenizer.tokenize(text)
        assert len(ids) > 0
        return ids, len(text)


def get_args():
    parser = argparse.ArgumentParser()
    group = parser.add_argument_group(title='input data')
    group.add_argument('--input', type=str, required=True,
                       help='Path to input JSON')

    group = parser.add_argument_group(title='tokenizer')
    group.add_argument('--tokenizer-type', type=str, default='YTTMTokenizer',
                       choices=['BertWordPieceLowerCase','BertWordPieceCase',
                                'GPT2BPETokenizer', 'SentencePieceTokenizer'],
                       help='What type of tokenizer to use.')
    group.add_argument('--vocab-file', type=str, default=None,
                       help='Path to the vocab file')
    group.add_argument('--merge-file', type=str, default=None,
                       help='Path to the BPE merge file (if necessary).')

    group = parser.add_argument_group(title='output data')
    group.add_argument('--output-prefix', type=str, required=True,
                       help='Path to binary output file without suffix')

    group = parser.add_argument_group(title='runtime')
    group.add_argument('--workers', type=int, default=1,
                       help='Number of worker processes to launch')
    group.add_argument('--log-interval', type=int, default=100,
                       help='Interval between progress updates')
    args = parser.parse_args()
    args.keep_empty = False

    # some default/dummy values for the tokenizer
    args.rank = 0
    args.make_vocab_size_divisible_by = 128
    args.tensor_model_parallel_size = 1
    args.vocab_extra_ids = 0

    return args

def main():
    args = get_args()
    startup_start = time.time()

    print("Opening", args.input)
    fin = open(args.input, 'r', encoding='utf-8')

    encoder = Encoder(args)
    tokenizer = build_tokenizer(args)
    pool = multiprocessing.Pool(args.workers, initializer=encoder.initializer)
    encoded_sentences = pool.imap(encoder.encode, fin, 25)

    print(f"Vocab size: {tokenizer.vocab_size}")
    print(f"Output prefix: {args.output_prefix}")
    output_bin_file = "{}.bin".format(args.output_prefix)
    output_idx_file = "{}.idx".format(args.output_prefix)
liangjing's avatar
liangjing committed
85
86
87
    builder = indexed_dataset.IndexedDatasetBuilder(
        output_bin_file, dtype=indexed_dataset.DType.optimal_dtype(tokenizer.vocab_size)
    )
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111

    startup_end = time.time()
    proc_start = time.time()
    total_bytes_processed = 0
    print("Time to startup:", startup_end - startup_start)

    for i, (sentence, bytes_processed) in enumerate(encoded_sentences, start=1):
        total_bytes_processed += bytes_processed
        builder.add_item(torch.IntTensor(sentence))
        # documents contain only one sentence.
        builder.end_document()
        if i % args.log_interval == 0:
            current = time.time()
            elapsed = current - proc_start
            mbs = total_bytes_processed/elapsed/1024/1024
            print(f"Processed {i} sentences",
                  f"({i/elapsed} sentences/s, {mbs} MB/s).",
                  file=sys.stderr)

    builder.finalize(output_idx_file)

if __name__ == '__main__':
    main()