test_optimizer_param_scheduler.py 6.71 KB
Newer Older
liangjing's avatar
liangjing committed
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
import math
from unittest.mock import MagicMock

import pytest

from megatron.core.optimizer_param_scheduler import (  # Adjust import according to your module path
    OptimizerParamScheduler,
)


@pytest.fixture
def mock_optimizer():
    optimizer = MagicMock()
    optimizer.param_groups = [{'lr': 0.0, 'weight_decay': 0.0}]
    return optimizer


def test_initialization(mock_optimizer):
    scheduler = OptimizerParamScheduler(
        optimizer=mock_optimizer,
        init_lr=0.01,
        max_lr=0.1,
        min_lr=0.001,
        lr_warmup_steps=100,
        lr_decay_steps=1000,
        lr_decay_style='linear',
        start_wd=0.0,
        end_wd=0.1,
        wd_incr_steps=1000,
        wd_incr_style='linear',
    )

    assert scheduler.init_lr == 0.01
    assert scheduler.max_lr == 0.1
    assert scheduler.min_lr == 0.001
    assert scheduler.lr_warmup_steps == 100
    assert scheduler.lr_decay_steps == 1000
    assert scheduler.lr_decay_style == 'linear'
    assert scheduler.start_wd == 0.0
    assert scheduler.end_wd == 0.1
    assert scheduler.wd_incr_steps == 1000
    assert scheduler.wd_incr_style == 'linear'


def test_get_wd_constant(mock_optimizer):
    scheduler = OptimizerParamScheduler(
        optimizer=mock_optimizer,
        init_lr=0.01,
        max_lr=0.1,
        min_lr=0.001,
        lr_warmup_steps=100,
        lr_decay_steps=1000,
        lr_decay_style='linear',
        start_wd=0.1,
        end_wd=0.1,
        wd_incr_steps=1000,
        wd_incr_style='constant',
    )

    scheduler.step(500)
    wd = scheduler.get_wd()
    assert wd == 0.1


def test_get_wd_linear(mock_optimizer):
    scheduler = OptimizerParamScheduler(
        optimizer=mock_optimizer,
        init_lr=0.01,
        max_lr=0.1,
        min_lr=0.001,
        lr_warmup_steps=100,
        lr_decay_steps=1000,
        lr_decay_style='linear',
        start_wd=0.0,
        end_wd=0.1,
        wd_incr_steps=1000,
        wd_incr_style='linear',
    )

    scheduler.step(500)
    wd = scheduler.get_wd()
    assert wd == 0.05


def test_get_wd_cosine(mock_optimizer):
    scheduler = OptimizerParamScheduler(
        optimizer=mock_optimizer,
        init_lr=0.01,
        max_lr=0.1,
        min_lr=0.001,
        lr_warmup_steps=100,
        lr_decay_steps=1000,
        lr_decay_style='cosine',
        start_wd=0.0,
        end_wd=0.1,
        wd_incr_steps=1000,
        wd_incr_style='cosine',
    )

    scheduler.step(500)
    wd = scheduler.get_wd()
    expected_wd = 0.05 * (math.cos(math.pi * (1 - 0.5)) + 1.0)
    assert math.isclose(wd, expected_wd, rel_tol=1e-5)


def test_get_lr_linear(mock_optimizer):
    scheduler = OptimizerParamScheduler(
        optimizer=mock_optimizer,
        init_lr=0.01,
        max_lr=0.1,
        min_lr=0.001,
        lr_warmup_steps=100,
        lr_decay_steps=1000,
        lr_decay_style='linear',
        start_wd=0.0,
        end_wd=0.1,
        wd_incr_steps=1000,
        wd_incr_style='linear',
    )

    param_group = {'max_lr': 0.1, 'min_lr': 0.001}

    scheduler.step(50)
    lr = scheduler.get_lr(param_group)
    expected_lr = 0.01 + (0.1 - 0.01) * (50 / 100)
    assert math.isclose(lr, expected_lr, rel_tol=1e-5)

    scheduler.step(450)
    lr = scheduler.get_lr(param_group)
    expected_lr = 0.1 - ((0.1 - 0.001) * ((500 - 100) / (1000 - 100)))
    assert math.isclose(lr, expected_lr, rel_tol=1e-5)

    scheduler.step(501)
    lr = scheduler.get_lr(param_group)
    expected_lr = 0.001
    assert math.isclose(lr, expected_lr, rel_tol=1e-5)


def test_get_lr_cosine(mock_optimizer):
    scheduler = OptimizerParamScheduler(
        optimizer=mock_optimizer,
        init_lr=0.01,
        max_lr=0.1,
        min_lr=0.001,
        lr_warmup_steps=100,
        lr_decay_steps=1000,
        lr_decay_style='cosine',
        start_wd=0.0,
        end_wd=0.1,
        wd_incr_steps=1000,
        wd_incr_style='linear',
    )

    scheduler.step(500)
    param_group = {'max_lr': 0.1, 'min_lr': 0.001}
    lr = scheduler.get_lr(param_group)
    expected_lr = 0.001 + (0.1 - 0.001) * 0.5 * (
        math.cos(math.pi * ((500 - 100) / (1000 - 100))) + 1.0
    )
    assert math.isclose(lr, expected_lr, rel_tol=1e-5)


def test_step_function(mock_optimizer):
    scheduler = OptimizerParamScheduler(
        optimizer=mock_optimizer,
        init_lr=0.01,
        max_lr=0.1,
        min_lr=0.001,
        lr_warmup_steps=100,
        lr_decay_steps=1000,
        lr_decay_style='linear',
        start_wd=0.0,
        end_wd=0.1,
        wd_incr_steps=1000,
        wd_incr_style='linear',
    )

    scheduler.step(100)
    assert scheduler.num_steps == 100
    param_group = mock_optimizer.param_groups[0]
    assert math.isclose(param_group['lr'], 0.01 + (0.1 - 0.01) * (100 / 100), rel_tol=1e-5)
    assert math.isclose(param_group['weight_decay'], 0.01, rel_tol=1e-5)


def test_state_dict(mock_optimizer):
    scheduler = OptimizerParamScheduler(
        optimizer=mock_optimizer,
        init_lr=0.01,
        max_lr=0.1,
        min_lr=0.001,
        lr_warmup_steps=100,
        lr_decay_steps=1000,
        lr_decay_style='linear',
        start_wd=0.0,
        end_wd=0.1,
        wd_incr_steps=1000,
        wd_incr_style='linear',
    )

    state_dict = scheduler.state_dict()
    assert state_dict['max_lr'] == 0.1
    assert state_dict['lr_warmup_steps'] == 100
    assert state_dict['num_steps'] == 0
    assert state_dict['lr_decay_style'] == 'linear'
    assert state_dict['lr_decay_steps'] == 1000
    assert state_dict['min_lr'] == 0.001
    assert state_dict['start_wd'] == 0.0
    assert state_dict['end_wd'] == 0.1
    assert state_dict['wd_incr_style'] == 'linear'
    assert state_dict['wd_incr_steps'] == 1000


def test_load_state_dict(mock_optimizer):
    scheduler = OptimizerParamScheduler(
        optimizer=mock_optimizer,
        init_lr=0.01,
        max_lr=0.1,
        min_lr=0.001,
        lr_warmup_steps=100,
        lr_decay_steps=1000,
        lr_decay_style='linear',
        start_wd=0.0,
        end_wd=0.1,
        wd_incr_steps=1000,
        wd_incr_style='linear',
    )

    state_dict = {
        'max_lr': 0.2,
        'min_lr': 0.0005,
        'lr_warmup_steps': 200,
        'lr_decay_steps': 2000,
        'lr_decay_style': 'cosine',
        'num_steps': 500,
        'start_wd': 0.01,
        'end_wd': 0.2,
        'wd_incr_steps': 500,
        'wd_incr_style': 'cosine',
    }

    scheduler.load_state_dict(state_dict)
    assert scheduler.max_lr == 0.2
    assert scheduler.min_lr == 0.0005
    assert scheduler.lr_warmup_steps == 200
    assert scheduler.lr_decay_steps == 2000
    assert scheduler.lr_decay_style == 'cosine'
    assert scheduler.num_steps == 500
    assert scheduler.start_wd == 0.01
    assert scheduler.end_wd == 0.2
    assert scheduler.wd_incr_steps == 500
    assert scheduler.wd_incr_style == 'cosine'