1. 22 May, 2023 1 commit
    • Birch-san's avatar
      Support for cross-attention bias / mask (#2634) · 64bf5d33
      Birch-san authored
      
      
      * Cross-attention masks
      
      prefer qualified symbol, fix accidental Optional
      
      prefer qualified symbol in AttentionProcessor
      
      prefer qualified symbol in embeddings.py
      
      qualified symbol in transformed_2d
      
      qualify FloatTensor in unet_2d_blocks
      
      move new transformer_2d params attention_mask, encoder_attention_mask to the end of the section which is assumed (e.g. by functions such as checkpoint()) to have a stable positional param interface. regard return_dict as a special-case which is assumed to be injected separately from positional params (e.g. by create_custom_forward()).
      
      move new encoder_attention_mask param to end of CrossAttn block interfaces and Unet2DCondition interface, to maintain positional param interface.
      
      regenerate modeling_text_unet.py
      
      remove unused import
      
      unet_2d_condition encoder_attention_mask docs
      Co-authored-by: default avatarPedro Cuenca <pedro@huggingface.co>
      
      versatile_diffusion/modeling_text_unet.py encoder_attention_mask docs
      Co-authored-by: default avatarPedro Cuenca <pedro@huggingface.co>
      
      transformer_2d encoder_attention_mask docs
      Co-authored-by: default avatarPedro Cuenca <pedro@huggingface.co>
      
      unet_2d_blocks.py: add parameter name comments
      Co-authored-by: default avatarPedro Cuenca <pedro@huggingface.co>
      
      revert description. bool-to-bias treatment happens in unet_2d_condition only.
      
      comment parameter names
      
      fix copies, style
      
      * encoder_attention_mask for SimpleCrossAttnDownBlock2D, SimpleCrossAttnUpBlock2D
      
      * encoder_attention_mask for UNetMidBlock2DSimpleCrossAttn
      
      * support attention_mask, encoder_attention_mask in KCrossAttnDownBlock2D, KCrossAttnUpBlock2D, KAttentionBlock. fix binding of attention_mask, cross_attention_kwargs params in KCrossAttnDownBlock2D, KCrossAttnUpBlock2D checkpoint invocations.
      
      * fix mistake made during merge conflict resolution
      
      * regenerate versatile_diffusion
      
      * pass time embedding into checkpointed attention invocation
      
      * always assume encoder_attention_mask is a mask (i.e. not a bias).
      
      * style, fix-copies
      
      * add tests for cross-attention masks
      
      * add test for padding of attention mask
      
      * explain mask's query_tokens dim. fix explanation about broadcasting over channels; we actually broadcast over query tokens
      
      * support both masks and biases in Transformer2DModel#forward. document behaviour
      
      * fix-copies
      
      * delete attention_mask docs on the basis I never tested self-attention masking myself. not comfortable explaining it, since I don't actually understand how a self-attn mask can work in its current form: the key length will be different in every ResBlock (we don't downsample the mask when we downsample the image).
      
      * review feedback: the standard Unet blocks shouldn't pass temb to attn (only to resnet). remove from KCrossAttnDownBlock2D,KCrossAttnUpBlock2D#forward.
      
      * remove encoder_attention_mask param from SimpleCrossAttn{Up,Down}Block2D,UNetMidBlock2DSimpleCrossAttn, and mask-choice in those blocks' #forward, on the basis that they only do one type of attention, so the consumer can pass whichever type of attention_mask is appropriate.
      
      * put attention mask padding back to how it was (since the SD use-case it enabled wasn't important, and it breaks the original unclip use-case). disable the test which was added.
      
      * fix-copies
      
      * style
      
      * fix-copies
      
      * put encoder_attention_mask param back into Simple block forward interfaces, to ensure consistency of forward interface.
      
      * restore passing of emb to KAttentionBlock#forward, on the basis that removal caused test failures. restore also the passing of emb to checkpointed calls to KAttentionBlock#forward.
      
      * make simple unet2d blocks use encoder_attention_mask, but only when attention_mask is None. this should fix UnCLIP compatibility.
      
      * fix copies
      64bf5d33
  2. 25 Apr, 2023 1 commit
    • Patrick von Platen's avatar
      add model (#3230) · e51f19ae
      Patrick von Platen authored
      
      
      * add
      
      * clean
      
      * up
      
      * clean up more
      
      * fix more tests
      
      * Improve docs further
      
      * improve
      
      * more fixes docs
      
      * Improve docs more
      
      * Update src/diffusers/models/unet_2d_condition.py
      
      * fix
      
      * up
      
      * update doc links
      
      * make fix-copies
      
      * add safety checker and watermarker to stage 3 doc page code snippets
      
      * speed optimizations docs
      
      * memory optimization docs
      
      * make style
      
      * add watermarking snippets to doc string examples
      
      * make style
      
      * use pt_to_pil helper functions in doc strings
      
      * skip mps tests
      
      * Improve safety
      
      * make style
      
      * new logic
      
      * fix
      
      * fix bad onnx design
      
      * make new stable diffusion upscale pipeline model arguments optional
      
      * define has_nsfw_concept when non-pil output type
      
      * lowercase linked to notebook name
      
      ---------
      Co-authored-by: default avatarWilliam Berman <WLBberman@gmail.com>
      e51f19ae
  3. 01 Mar, 2023 1 commit
  4. 07 Feb, 2023 1 commit
    • YiYi Xu's avatar
      Stable Diffusion Latent Upscaler (#2059) · 1051ca81
      YiYi Xu authored
      
      
      * Modify UNet2DConditionModel
      
      - allow skipping mid_block
      
      - adding a norm_group_size argument so that we can set the `num_groups` for group norm using `num_channels//norm_group_size`
      
      - allow user to set dimension for the timestep embedding (`time_embed_dim`)
      
      - the kernel_size for `conv_in` and `conv_out` is now configurable
      
      - add random fourier feature layer (`GaussianFourierProjection`) for `time_proj`
      
      - allow user to add the time and class embeddings before passing through the projection layer together - `time_embedding(t_emb + class_label))`
      
      - added 2 arguments `attn1_types` and `attn2_types`
      
        * currently we have argument `only_cross_attention`: when it's set to `True`, we will have a to the
      `BasicTransformerBlock` block with 2 cross-attention , otherwise we
      get a self-attention followed by a cross-attention; in k-upscaler, we need to have blocks that include just one cross-attention, or self-attention -> cross-attention;
      so I added `attn1_types` and `attn2_types` to the unet's argument list to allow user specify the attention types for the 2 positions in each block;  note that I stil kept
      the `only_cross_attention` argument for unet for easy configuration, but it will be converted to `attn1_type` and `attn2_type` when passing down to the down blocks
      
      - the position of downsample layer and upsample layer is now configurable
      
      - in k-upscaler unet, there is only one skip connection per each up/down block (instead of each layer in stable diffusion unet), added `skip_freq = "block"` to support
      this use case
      
      - if user passes attention_mask to unet, it will prepare the mask and pass a flag to cross attention processer to skip the `prepare_attention_mask` step
      inside cross attention block
      
      add up/down blocks for k-upscaler
      
      modify CrossAttention class
      
      - make the `dropout` layer in `to_out` optional
      
      - `use_conv_proj` - use conv instead of linear for all projection layers (i.e. `to_q`, `to_k`, `to_v`, `to_out`) whenever possible. note that when it's used to do cross
      attention, to_k, to_v has to be linear because the `encoder_hidden_states` is not 2d
      
      - `cross_attention_norm` - add an optional layernorm on encoder_hidden_states
      
      - `attention_dropout`: add an optional dropout on attention score
      
      adapt BasicTransformerBlock
      
      - add an ada groupnorm layer  to conditioning attention input with timestep embedding
      
      - allow skipping the FeedForward layer in between the attentions
      
      - replaced the only_cross_attention argument with attn1_type and attn2_type for more flexible configuration
      
      update timestep embedding: add new act_fn  gelu and an optional act_2
      
      modified ResnetBlock2D
      
      - refactored with AdaGroupNorm class (the timestep scale shift normalization)
      
      - add `mid_channel` argument - allow the first conv to have a different output dimension from the second conv
      
      - add option to use input AdaGroupNorm on the input instead of groupnorm
      
      - add options to add a dropout layer after each conv
      
      - allow user to set the bias in conv_shortcut (needed for k-upscaler)
      
      - add gelu
      
      adding conversion script for k-upscaler unet
      
      add pipeline
      
      * fix attention mask
      
      * fix a typo
      
      * fix a bug
      
      * make sure model can be used with GPU
      
      * make pipeline work with fp16
      
      * fix an error in BasicTransfomerBlock
      
      * make style
      
      * fix typo
      
      * some more fixes
      
      * uP
      
      * up
      
      * correct more
      
      * some clean-up
      
      * clean time proj
      
      * up
      
      * uP
      
      * more changes
      
      * remove the upcast_attention=True from unet config
      
      * remove attn1_types, attn2_types etc
      
      * fix
      
      * revert incorrect changes up/down samplers
      
      * make style
      
      * remove outdated files
      
      * Apply suggestions from code review
      
      * attention refactor
      
      * refactor cross attention
      
      * Apply suggestions from code review
      
      * update
      
      * up
      
      * update
      
      * Apply suggestions from code review
      
      * finish
      
      * Update src/diffusers/models/cross_attention.py
      
      * more fixes
      
      * up
      
      * up
      
      * up
      
      * finish
      
      * more corrections of conversion state
      
      * act_2 -> act_2_fn
      
      * remove dropout_after_conv from ResnetBlock2D
      
      * make style
      
      * simplify KAttentionBlock
      
      * add fast test for latent upscaler pipeline
      
      * add slow test
      
      * slow test fp16
      
      * make style
      
      * add doc string for pipeline_stable_diffusion_latent_upscale
      
      * add api doc page for latent upscaler pipeline
      
      * deprecate attention mask
      
      * clean up embeddings
      
      * simplify resnet
      
      * up
      
      * clean up resnet
      
      * up
      
      * correct more
      
      * up
      
      * up
      
      * improve a bit more
      
      * correct more
      
      * more clean-ups
      
      * Update docs/source/en/api/pipelines/stable_diffusion/latent_upscale.mdx
      Co-authored-by: default avatarPatrick von Platen <patrick.v.platen@gmail.com>
      
      * Update docs/source/en/api/pipelines/stable_diffusion/latent_upscale.mdx
      Co-authored-by: default avatarPatrick von Platen <patrick.v.platen@gmail.com>
      
      * add docstrings for new unet config
      
      * Update src/diffusers/pipelines/stable_diffusion/pipeline_stable_diffusion_latent_upscale.py
      Co-authored-by: default avatarPatrick von Platen <patrick.v.platen@gmail.com>
      
      * Update src/diffusers/pipelines/stable_diffusion/pipeline_stable_diffusion_latent_upscale.py
      Co-authored-by: default avatarPatrick von Platen <patrick.v.platen@gmail.com>
      
      * # Copied from
      
      * encode the image if not latent
      
      * remove force casting vae to fp32
      
      * fix
      
      * add comments about preconditioning parameters from k-diffusion paper
      
      * attn1_type, attn2_type -> add_self_attention
      
      * clean up get_down_block and get_up_block
      
      * fix
      
      * fixed a typo(?) in ada group norm
      
      * update slice attention processer for cross attention
      
      * update slice
      
      * fix fast test
      
      * update the checkpoint
      
      * finish tests
      
      * fix-copies
      
      * fix-copy for modeling_text_unet.py
      
      * make style
      
      * make style
      
      * fix f-string
      
      * Update src/diffusers/pipelines/stable_diffusion/pipeline_stable_diffusion_latent_upscale.py
      Co-authored-by: default avatarPatrick von Platen <patrick.v.platen@gmail.com>
      
      * fix import
      
      * correct changes
      
      * fix resnet
      
      * make fix-copies
      
      * correct euler scheduler
      
      * add missing #copied from for preprocess
      
      * revert
      
      * fix
      
      * fix copies
      
      * Update docs/source/en/api/pipelines/stable_diffusion/latent_upscale.mdx
      Co-authored-by: default avatarPedro Cuenca <pedro@huggingface.co>
      
      * Update docs/source/en/api/pipelines/stable_diffusion/latent_upscale.mdx
      Co-authored-by: default avatarPedro Cuenca <pedro@huggingface.co>
      
      * Update docs/source/en/api/pipelines/stable_diffusion/latent_upscale.mdx
      Co-authored-by: default avatarPedro Cuenca <pedro@huggingface.co>
      
      * Update docs/source/en/api/pipelines/stable_diffusion/latent_upscale.mdx
      Co-authored-by: default avatarPedro Cuenca <pedro@huggingface.co>
      
      * Update src/diffusers/models/cross_attention.py
      Co-authored-by: default avatarPedro Cuenca <pedro@huggingface.co>
      
      * Update src/diffusers/pipelines/stable_diffusion/pipeline_stable_diffusion_latent_upscale.py
      Co-authored-by: default avatarPedro Cuenca <pedro@huggingface.co>
      
      * Update src/diffusers/pipelines/stable_diffusion/pipeline_stable_diffusion_latent_upscale.py
      Co-authored-by: default avatarPedro Cuenca <pedro@huggingface.co>
      
      * clean up conversion script
      
      * KDownsample2d,KUpsample2d -> KDownsample2D,KUpsample2D
      
      * more
      
      * Update src/diffusers/models/unet_2d_condition.py
      Co-authored-by: default avatarPedro Cuenca <pedro@huggingface.co>
      
      * remove prepare_extra_step_kwargs
      
      * Update src/diffusers/pipelines/stable_diffusion/pipeline_stable_diffusion_latent_upscale.py
      Co-authored-by: default avatarPedro Cuenca <pedro@huggingface.co>
      
      * Update src/diffusers/pipelines/stable_diffusion/pipeline_stable_diffusion_latent_upscale.py
      Co-authored-by: default avatarPatrick von Platen <patrick.v.platen@gmail.com>
      
      * fix a typo in timestep embedding
      
      * remove num_image_per_prompt
      
      * fix fasttest
      
      * make style + fix-copies
      
      * fix
      
      * fix xformer test
      
      * fix style
      
      * doc string
      
      * make style
      
      * fix-copies
      
      * docstring for time_embedding_norm
      
      * make style
      
      * final finishes
      
      * make fix-copies
      
      * fix tests
      
      ---------
      Co-authored-by: default avataryiyixuxu <yixu@yis-macbook-pro.lan>
      Co-authored-by: default avatarPatrick von Platen <patrick.v.platen@gmail.com>
      Co-authored-by: default avatarPedro Cuenca <pedro@huggingface.co>
      1051ca81
  5. 17 Jan, 2023 1 commit
    • Kashif Rasul's avatar
      DiT Pipeline (#1806) · 37d113cc
      Kashif Rasul authored
      
      
      * added dit model
      
      * import
      
      * initial pipeline
      
      * initial convert script
      
      * initial pipeline
      
      * make style
      
      * raise valueerror
      
      * single function
      
      * rename classes
      
      * use DDIMScheduler
      
      * timesteps embedder
      
      * samples to cpu
      
      * fix var names
      
      * fix numpy type
      
      * use timesteps class for proj
      
      * fix typo
      
      * fix arg name
      
      * flip_sin_to_cos and better var names
      
      * fix C shape cal
      
      * make style
      
      * remove unused imports
      
      * cleanup
      
      * add back patch_size
      
      * initial dit doc
      
      * typo
      
      * Update docs/source/api/pipelines/dit.mdx
      Co-authored-by: default avatarSuraj Patil <surajp815@gmail.com>
      
      * added copyright license headers
      
      * added example usage and toc
      
      * fix variable names asserts
      
      * remove comment
      
      * added docs
      
      * fix typo
      
      * upstream changes
      
      * set proper device for drop_ids
      
      * added initial dit pipeline test
      
      * update docs
      
      * fix imports
      
      * make fix-copies
      
      * isort
      
      * fix imports
      
      * get rid of more magic numbers
      
      * fix code when guidance is off
      
      * remove block_kwargs
      
      * cleanup script
      
      * removed to_2tuple
      
      * use FeedForward class instead of another MLP
      
      * style
      
      * work on mergint DiTBlock with BasicTransformerBlock
      
      * added missing final_dropout and args to BasicTransformerBlock
      
      * use norm from block
      
      * fix arg
      
      * remove unused arg
      
      * fix call to class_embedder
      
      * use timesteps
      
      * make style
      
      * attn_output gets multiplied
      
      * removed commented code
      
      * use Transformer2D
      
      * use self.is_input_patches
      
      * fix flags
      
      * fixed conversion to use Transformer2DModel
      
      * fixes for pipeline
      
      * remove dit.py
      
      * fix timesteps device
      
      * use randn_tensor and fix fp16 inf.
      
      * timesteps_emb already the right dtype
      
      * fix dit test class
      
      * fix test and style
      
      * fix norm2 usage in vq-diffusion
      
      * added author names to pipeline and lmagenet labels link
      
      * fix tests
      
      * use norm_type as string
      
      * rename dit to transformer
      
      * fix name
      
      * fix test
      
      * set  norm_type = "layer" by default
      
      * fix tests
      
      * do not skip common tests
      
      * Update src/diffusers/models/attention.py
      Co-authored-by: default avatarSuraj Patil <surajp815@gmail.com>
      
      * revert AdaLayerNorm API
      
      * fix norm_type name
      
      * make sure all components are in eval mode
      
      * revert norm2 API
      
      * compact
      
      * finish deprecation
      
      * add slow tests
      
      * remove @
      
      * refactor some stuff
      
      * upload
      
      * Update src/diffusers/pipelines/dit/pipeline_dit.py
      
      * finish more
      
      * finish docs
      
      * improve docs
      
      * finish docs
      Co-authored-by: default avatarSuraj Patil <surajp815@gmail.com>
      Co-authored-by: default avatarWilliam Berman <WLBberman@gmail.com>
      Co-authored-by: default avatarPatrick von Platen <patrick.v.platen@gmail.com>
      37d113cc
  6. 14 Nov, 2022 1 commit
    • Nathan Lambert's avatar
      Add UNet 1d for RL model for planning + colab (#105) · 7c5fef81
      Nathan Lambert authored
      
      
      * re-add RL model code
      
      * match model forward api
      
      * add register_to_config, pass training tests
      
      * fix tests, update forward outputs
      
      * remove unused code, some comments
      
      * add to docs
      
      * remove extra embedding code
      
      * unify time embedding
      
      * remove conv1d output sequential
      
      * remove sequential from conv1dblock
      
      * style and deleting duplicated code
      
      * clean files
      
      * remove unused variables
      
      * clean variables
      
      * add 1d resnet block structure for downsample
      
      * rename as unet1d
      
      * fix renaming
      
      * rename files
      
      * add get_block(...) api
      
      * unify args for model1d like model2d
      
      * minor cleaning
      
      * fix docs
      
      * improve 1d resnet blocks
      
      * fix tests, remove permuts
      
      * fix style
      
      * add output activation
      
      * rename flax blocks file
      
      * Add Value Function and corresponding example script to Diffuser implementation (#884)
      
      * valuefunction code
      
      * start example scripts
      
      * missing imports
      
      * bug fixes and placeholder example script
      
      * add value function scheduler
      
      * load value function from hub and get best actions in example
      
      * very close to working example
      
      * larger batch size for planning
      
      * more tests
      
      * merge unet1d changes
      
      * wandb for debugging, use newer models
      
      * success!
      
      * turns out we just need more diffusion steps
      
      * run on modal
      
      * merge and code cleanup
      
      * use same api for rl model
      
      * fix variance type
      
      * wrong normalization function
      
      * add tests
      
      * style
      
      * style and quality
      
      * edits based on comments
      
      * style and quality
      
      * remove unused var
      
      * hack unet1d into a value function
      
      * add pipeline
      
      * fix arg order
      
      * add pipeline to core library
      
      * community pipeline
      
      * fix couple shape bugs
      
      * style
      
      * Apply suggestions from code review
      Co-authored-by: default avatarNathan Lambert <nathan@huggingface.co>
      
      * update post merge of scripts
      
      * add mdiblock / outblock architecture
      
      * Pipeline cleanup (#947)
      
      * valuefunction code
      
      * start example scripts
      
      * missing imports
      
      * bug fixes and placeholder example script
      
      * add value function scheduler
      
      * load value function from hub and get best actions in example
      
      * very close to working example
      
      * larger batch size for planning
      
      * more tests
      
      * merge unet1d changes
      
      * wandb for debugging, use newer models
      
      * success!
      
      * turns out we just need more diffusion steps
      
      * run on modal
      
      * merge and code cleanup
      
      * use same api for rl model
      
      * fix variance type
      
      * wrong normalization function
      
      * add tests
      
      * style
      
      * style and quality
      
      * edits based on comments
      
      * style and quality
      
      * remove unused var
      
      * hack unet1d into a value function
      
      * add pipeline
      
      * fix arg order
      
      * add pipeline to core library
      
      * community pipeline
      
      * fix couple shape bugs
      
      * style
      
      * Apply suggestions from code review
      
      * clean up comments
      
      * convert older script to using pipeline and add readme
      
      * rename scripts
      
      * style, update tests
      
      * delete unet rl model file
      
      * remove imports in src
      Co-authored-by: default avatarNathan Lambert <nathan@huggingface.co>
      
      * Update src/diffusers/models/unet_1d_blocks.py
      
      * Update tests/test_models_unet.py
      
      * RL Cleanup v2 (#965)
      
      * valuefunction code
      
      * start example scripts
      
      * missing imports
      
      * bug fixes and placeholder example script
      
      * add value function scheduler
      
      * load value function from hub and get best actions in example
      
      * very close to working example
      
      * larger batch size for planning
      
      * more tests
      
      * merge unet1d changes
      
      * wandb for debugging, use newer models
      
      * success!
      
      * turns out we just need more diffusion steps
      
      * run on modal
      
      * merge and code cleanup
      
      * use same api for rl model
      
      * fix variance type
      
      * wrong normalization function
      
      * add tests
      
      * style
      
      * style and quality
      
      * edits based on comments
      
      * style and quality
      
      * remove unused var
      
      * hack unet1d into a value function
      
      * add pipeline
      
      * fix arg order
      
      * add pipeline to core library
      
      * community pipeline
      
      * fix couple shape bugs
      
      * style
      
      * Apply suggestions from code review
      
      * clean up comments
      
      * convert older script to using pipeline and add readme
      
      * rename scripts
      
      * style, update tests
      
      * delete unet rl model file
      
      * remove imports in src
      
      * add specific vf block and update tests
      
      * style
      
      * Update tests/test_models_unet.py
      Co-authored-by: default avatarNathan Lambert <nathan@huggingface.co>
      
      * fix quality in tests
      
      * fix quality style, split test file
      
      * fix checks / tests
      
      * make timesteps closer to main
      
      * unify block API
      
      * unify forward api
      
      * delete lines in examples
      
      * style
      
      * examples style
      
      * all tests pass
      
      * make style
      
      * make dance_diff test pass
      
      * Refactoring RL PR (#1200)
      
      * init file changes
      
      * add import utils
      
      * finish cleaning files, imports
      
      * remove import flags
      
      * clean examples
      
      * fix imports, tests for merge
      
      * update readmes
      
      * hotfix for tests
      
      * quality
      
      * fix some tests
      
      * change defaults
      
      * more mps test fixes
      
      * unet1d defaults
      
      * do not default import experimental
      
      * defaults for tests
      
      * fix tests
      
      * fix-copies
      
      * fix
      
      * changes per Patrik's comments (#1285)
      
      * changes per Patrik's comments
      
      * update conversion script
      
      * fix renaming
      
      * skip more mps tests
      
      * last test fix
      
      * Update examples/rl/README.md
      Co-authored-by: default avatarBen Glickenhaus <benglickenhaus@gmail.com>
      7c5fef81
  7. 03 Nov, 2022 1 commit
    • Will Berman's avatar
      VQ-diffusion (#658) · ef2ea33c
      Will Berman authored
      
      
      * Changes for VQ-diffusion VQVAE
      
      Add specify dimension of embeddings to VQModel:
      `VQModel` will by default set the dimension of embeddings to the number
      of latent channels. The VQ-diffusion VQVAE has a smaller
      embedding dimension, 128, than number of latent channels, 256.
      
      Add AttnDownEncoderBlock2D and AttnUpDecoderBlock2D to the up and down
      unet block helpers. VQ-diffusion's VQVAE uses those two block types.
      
      * Changes for VQ-diffusion transformer
      
      Modify attention.py so SpatialTransformer can be used for
      VQ-diffusion's transformer.
      
      SpatialTransformer:
      - Can now operate over discrete inputs (classes of vector embeddings) as well as continuous.
      - `in_channels` was made optional in the constructor so two locations where it was passed as a positional arg were moved to kwargs
      - modified forward pass to take optional timestep embeddings
      
      ImagePositionalEmbeddings:
      - added to provide positional embeddings to discrete inputs for latent pixels
      
      BasicTransformerBlock:
      - norm layers were made configurable so that the VQ-diffusion could use AdaLayerNorm with timestep embeddings
      - modified forward pass to take optional timestep embeddings
      
      CrossAttention:
      - now may optionally take a bias parameter for its query, key, and value linear layers
      
      FeedForward:
      - Internal layers are now configurable
      
      ApproximateGELU:
      - Activation function in VQ-diffusion's feedforward layer
      
      AdaLayerNorm:
      - Norm layer modified to incorporate timestep embeddings
      
      * Add VQ-diffusion scheduler
      
      * Add VQ-diffusion pipeline
      
      * Add VQ-diffusion convert script to diffusers
      
      * Add VQ-diffusion dummy objects
      
      * Add VQ-diffusion markdown docs
      
      * Add VQ-diffusion tests
      
      * some renaming
      
      * some fixes
      
      * more renaming
      
      * correct
      
      * fix typo
      
      * correct weights
      
      * finalize
      
      * fix tests
      
      * Apply suggestions from code review
      Co-authored-by: default avatarAnton Lozhkov <aglozhkov@gmail.com>
      
      * Apply suggestions from code review
      Co-authored-by: default avatarPedro Cuenca <pedro@huggingface.co>
      
      * finish
      
      * finish
      
      * up
      Co-authored-by: default avatarPatrick von Platen <patrick.v.platen@gmail.com>
      Co-authored-by: default avatarAnton Lozhkov <aglozhkov@gmail.com>
      Co-authored-by: default avatarPedro Cuenca <pedro@huggingface.co>
      ef2ea33c
  8. 25 Oct, 2022 1 commit
  9. 30 Sep, 2022 1 commit
    • Nouamane Tazi's avatar
      Optimize Stable Diffusion (#371) · 9ebaea54
      Nouamane Tazi authored
      * initial commit
      
      * make UNet stream capturable
      
      * try to fix noise_pred value
      
      * remove cuda graph and keep NB
      
      * non blocking unet with PNDMScheduler
      
      * make timesteps np arrays for pndm scheduler
      because lists don't get formatted to tensors in `self.set_format`
      
      * make max async in pndm
      
      * use channel last format in unet
      
      * avoid moving timesteps device in each unet call
      
      * avoid memcpy op in `get_timestep_embedding`
      
      * add `channels_last` kwarg to `DiffusionPipeline.from_pretrained`
      
      * update TODO
      
      * replace `channels_last` kwarg with `memory_format` for more generality
      
      * revert the channels_last changes to leave it for another PR
      
      * remove non_blocking when moving input ids to device
      
      * remove blocking from all .to() operations at beginning of pipeline
      
      * fix merging
      
      * fix merging
      
      * model can run in other precisions without autocast
      
      * attn refactoring
      
      * Revert "attn refactoring"
      
      This reverts commit 0c70c0e189cd2c4d8768274c9fcf5b940ee310fb.
      
      * remove restriction to run conv_norm in fp32
      
      * use `baddbmm` instead of `matmul`for better in attention for better perf
      
      * removing all reshapes to test perf
      
      * Revert "removing all reshapes to test perf"
      
      This reverts commit 006ccb8a8c6bc7eb7e512392e692a29d9b1553cd.
      
      * add shapes comments
      
      * hardcore whats needed for jitting
      
      * Revert "hardcore whats needed for jitting"
      
      This reverts commit 2fa9c698eae2890ac5f8e367ca80532ecf94df9a.
      
      * Revert "remove restriction to run conv_norm in fp32"
      
      This reverts commit cec592890c32da3d1b78d38b49e4307aedf459b9.
      
      * revert using baddmm in attention's forward
      
      * cleanup comment
      
      * remove restriction to run conv_norm in fp32. no quality loss was noticed
      
      This reverts commit cc9bc1339c998ebe9e7d733f910c6d72d9792213.
      
      * add more optimizations techniques to docs
      
      * Revert "add shapes comments"
      
      This reverts commit 31c58eadb8892f95478cdf05229adf678678c5f4.
      
      * apply suggestions
      
      * make quality
      
      * apply suggestions
      
      * styling
      
      * `scheduler.timesteps` are now arrays so we dont need .to()
      
      * remove useless .type()
      
      * use mean instead of max in `test_stable_diffusion_inpaint_pipeline_k_lms`
      
      * move scheduler timestamps to correct device if tensors
      
      * add device to `set_timesteps` in LMSD scheduler
      
      * `self.scheduler.set_timesteps` now uses device arg for schedulers that accept it
      
      * quick fix
      
      * styling
      
      * remove kwargs from schedulers `set_timesteps`
      
      * revert to using max in K-LMS inpaint pipeline test
      
      * Revert "`self.scheduler.set_timesteps` now uses device arg for schedulers that accept it"
      
      This reverts commit 00d5a51e5c20d8d445c8664407ef29608106d899.
      
      * move timesteps to correct device before loop in SD pipeline
      
      * apply previous fix to other SD pipelines
      
      * UNet now accepts tensor timesteps even on wrong device, to avoid errors
      - it shouldnt affect performance if timesteps are alrdy on correct device
      - it does slow down performance if they're on the wrong device
      
      * fix pipeline when timesteps are arrays with strides
      9ebaea54
  10. 08 Sep, 2022 1 commit
  11. 16 Aug, 2022 1 commit
  12. 19 Jul, 2022 1 commit
  13. 18 Jul, 2022 1 commit
  14. 28 Jun, 2022 1 commit
  15. 27 Jun, 2022 6 commits