1. 21 Mar, 2023 1 commit
  2. 15 Mar, 2023 1 commit
  3. 01 Mar, 2023 1 commit
  4. 07 Feb, 2023 1 commit
    • YiYi Xu's avatar
      Stable Diffusion Latent Upscaler (#2059) · 1051ca81
      YiYi Xu authored
      
      
      * Modify UNet2DConditionModel
      
      - allow skipping mid_block
      
      - adding a norm_group_size argument so that we can set the `num_groups` for group norm using `num_channels//norm_group_size`
      
      - allow user to set dimension for the timestep embedding (`time_embed_dim`)
      
      - the kernel_size for `conv_in` and `conv_out` is now configurable
      
      - add random fourier feature layer (`GaussianFourierProjection`) for `time_proj`
      
      - allow user to add the time and class embeddings before passing through the projection layer together - `time_embedding(t_emb + class_label))`
      
      - added 2 arguments `attn1_types` and `attn2_types`
      
        * currently we have argument `only_cross_attention`: when it's set to `True`, we will have a to the
      `BasicTransformerBlock` block with 2 cross-attention , otherwise we
      get a self-attention followed by a cross-attention; in k-upscaler, we need to have blocks that include just one cross-attention, or self-attention -> cross-attention;
      so I added `attn1_types` and `attn2_types` to the unet's argument list to allow user specify the attention types for the 2 positions in each block;  note that I stil kept
      the `only_cross_attention` argument for unet for easy configuration, but it will be converted to `attn1_type` and `attn2_type` when passing down to the down blocks
      
      - the position of downsample layer and upsample layer is now configurable
      
      - in k-upscaler unet, there is only one skip connection per each up/down block (instead of each layer in stable diffusion unet), added `skip_freq = "block"` to support
      this use case
      
      - if user passes attention_mask to unet, it will prepare the mask and pass a flag to cross attention processer to skip the `prepare_attention_mask` step
      inside cross attention block
      
      add up/down blocks for k-upscaler
      
      modify CrossAttention class
      
      - make the `dropout` layer in `to_out` optional
      
      - `use_conv_proj` - use conv instead of linear for all projection layers (i.e. `to_q`, `to_k`, `to_v`, `to_out`) whenever possible. note that when it's used to do cross
      attention, to_k, to_v has to be linear because the `encoder_hidden_states` is not 2d
      
      - `cross_attention_norm` - add an optional layernorm on encoder_hidden_states
      
      - `attention_dropout`: add an optional dropout on attention score
      
      adapt BasicTransformerBlock
      
      - add an ada groupnorm layer  to conditioning attention input with timestep embedding
      
      - allow skipping the FeedForward layer in between the attentions
      
      - replaced the only_cross_attention argument with attn1_type and attn2_type for more flexible configuration
      
      update timestep embedding: add new act_fn  gelu and an optional act_2
      
      modified ResnetBlock2D
      
      - refactored with AdaGroupNorm class (the timestep scale shift normalization)
      
      - add `mid_channel` argument - allow the first conv to have a different output dimension from the second conv
      
      - add option to use input AdaGroupNorm on the input instead of groupnorm
      
      - add options to add a dropout layer after each conv
      
      - allow user to set the bias in conv_shortcut (needed for k-upscaler)
      
      - add gelu
      
      adding conversion script for k-upscaler unet
      
      add pipeline
      
      * fix attention mask
      
      * fix a typo
      
      * fix a bug
      
      * make sure model can be used with GPU
      
      * make pipeline work with fp16
      
      * fix an error in BasicTransfomerBlock
      
      * make style
      
      * fix typo
      
      * some more fixes
      
      * uP
      
      * up
      
      * correct more
      
      * some clean-up
      
      * clean time proj
      
      * up
      
      * uP
      
      * more changes
      
      * remove the upcast_attention=True from unet config
      
      * remove attn1_types, attn2_types etc
      
      * fix
      
      * revert incorrect changes up/down samplers
      
      * make style
      
      * remove outdated files
      
      * Apply suggestions from code review
      
      * attention refactor
      
      * refactor cross attention
      
      * Apply suggestions from code review
      
      * update
      
      * up
      
      * update
      
      * Apply suggestions from code review
      
      * finish
      
      * Update src/diffusers/models/cross_attention.py
      
      * more fixes
      
      * up
      
      * up
      
      * up
      
      * finish
      
      * more corrections of conversion state
      
      * act_2 -> act_2_fn
      
      * remove dropout_after_conv from ResnetBlock2D
      
      * make style
      
      * simplify KAttentionBlock
      
      * add fast test for latent upscaler pipeline
      
      * add slow test
      
      * slow test fp16
      
      * make style
      
      * add doc string for pipeline_stable_diffusion_latent_upscale
      
      * add api doc page for latent upscaler pipeline
      
      * deprecate attention mask
      
      * clean up embeddings
      
      * simplify resnet
      
      * up
      
      * clean up resnet
      
      * up
      
      * correct more
      
      * up
      
      * up
      
      * improve a bit more
      
      * correct more
      
      * more clean-ups
      
      * Update docs/source/en/api/pipelines/stable_diffusion/latent_upscale.mdx
      Co-authored-by: default avatarPatrick von Platen <patrick.v.platen@gmail.com>
      
      * Update docs/source/en/api/pipelines/stable_diffusion/latent_upscale.mdx
      Co-authored-by: default avatarPatrick von Platen <patrick.v.platen@gmail.com>
      
      * add docstrings for new unet config
      
      * Update src/diffusers/pipelines/stable_diffusion/pipeline_stable_diffusion_latent_upscale.py
      Co-authored-by: default avatarPatrick von Platen <patrick.v.platen@gmail.com>
      
      * Update src/diffusers/pipelines/stable_diffusion/pipeline_stable_diffusion_latent_upscale.py
      Co-authored-by: default avatarPatrick von Platen <patrick.v.platen@gmail.com>
      
      * # Copied from
      
      * encode the image if not latent
      
      * remove force casting vae to fp32
      
      * fix
      
      * add comments about preconditioning parameters from k-diffusion paper
      
      * attn1_type, attn2_type -> add_self_attention
      
      * clean up get_down_block and get_up_block
      
      * fix
      
      * fixed a typo(?) in ada group norm
      
      * update slice attention processer for cross attention
      
      * update slice
      
      * fix fast test
      
      * update the checkpoint
      
      * finish tests
      
      * fix-copies
      
      * fix-copy for modeling_text_unet.py
      
      * make style
      
      * make style
      
      * fix f-string
      
      * Update src/diffusers/pipelines/stable_diffusion/pipeline_stable_diffusion_latent_upscale.py
      Co-authored-by: default avatarPatrick von Platen <patrick.v.platen@gmail.com>
      
      * fix import
      
      * correct changes
      
      * fix resnet
      
      * make fix-copies
      
      * correct euler scheduler
      
      * add missing #copied from for preprocess
      
      * revert
      
      * fix
      
      * fix copies
      
      * Update docs/source/en/api/pipelines/stable_diffusion/latent_upscale.mdx
      Co-authored-by: default avatarPedro Cuenca <pedro@huggingface.co>
      
      * Update docs/source/en/api/pipelines/stable_diffusion/latent_upscale.mdx
      Co-authored-by: default avatarPedro Cuenca <pedro@huggingface.co>
      
      * Update docs/source/en/api/pipelines/stable_diffusion/latent_upscale.mdx
      Co-authored-by: default avatarPedro Cuenca <pedro@huggingface.co>
      
      * Update docs/source/en/api/pipelines/stable_diffusion/latent_upscale.mdx
      Co-authored-by: default avatarPedro Cuenca <pedro@huggingface.co>
      
      * Update src/diffusers/models/cross_attention.py
      Co-authored-by: default avatarPedro Cuenca <pedro@huggingface.co>
      
      * Update src/diffusers/pipelines/stable_diffusion/pipeline_stable_diffusion_latent_upscale.py
      Co-authored-by: default avatarPedro Cuenca <pedro@huggingface.co>
      
      * Update src/diffusers/pipelines/stable_diffusion/pipeline_stable_diffusion_latent_upscale.py
      Co-authored-by: default avatarPedro Cuenca <pedro@huggingface.co>
      
      * clean up conversion script
      
      * KDownsample2d,KUpsample2d -> KDownsample2D,KUpsample2D
      
      * more
      
      * Update src/diffusers/models/unet_2d_condition.py
      Co-authored-by: default avatarPedro Cuenca <pedro@huggingface.co>
      
      * remove prepare_extra_step_kwargs
      
      * Update src/diffusers/pipelines/stable_diffusion/pipeline_stable_diffusion_latent_upscale.py
      Co-authored-by: default avatarPedro Cuenca <pedro@huggingface.co>
      
      * Update src/diffusers/pipelines/stable_diffusion/pipeline_stable_diffusion_latent_upscale.py
      Co-authored-by: default avatarPatrick von Platen <patrick.v.platen@gmail.com>
      
      * fix a typo in timestep embedding
      
      * remove num_image_per_prompt
      
      * fix fasttest
      
      * make style + fix-copies
      
      * fix
      
      * fix xformer test
      
      * fix style
      
      * doc string
      
      * make style
      
      * fix-copies
      
      * docstring for time_embedding_norm
      
      * make style
      
      * final finishes
      
      * make fix-copies
      
      * fix tests
      
      ---------
      Co-authored-by: default avataryiyixuxu <yixu@yis-macbook-pro.lan>
      Co-authored-by: default avatarPatrick von Platen <patrick.v.platen@gmail.com>
      Co-authored-by: default avatarPedro Cuenca <pedro@huggingface.co>
      1051ca81
  5. 01 Jan, 2023 1 commit
  6. 20 Dec, 2022 1 commit
  7. 19 Dec, 2022 1 commit
  8. 18 Dec, 2022 1 commit
    • Will Berman's avatar
      kakaobrain unCLIP (#1428) · 2dcf64b7
      Will Berman authored
      
      
      * [wip] attention block updates
      
      * [wip] unCLIP unet decoder and super res
      
      * [wip] unCLIP prior transformer
      
      * [wip] scheduler changes
      
      * [wip] text proj utility class
      
      * [wip] UnCLIPPipeline
      
      * [wip] kakaobrain unCLIP convert script
      
      * [unCLIP pipeline] fixes re: @patrickvonplaten
      
      remove callbacks
      
      move denoising loops into call function
      
      * UNCLIPScheduler re: @patrickvonplaten
      
      Revert changes to DDPMScheduler. Make UNCLIPScheduler, a modified
      DDPM scheduler with changes to support karlo
      
      * mask -> attention_mask re: @patrickvonplaten
      
      * [DDPMScheduler] remove leftover change
      
      * [docs] PriorTransformer
      
      * [docs] UNet2DConditionModel and UNet2DModel
      
      * [nit] UNCLIPScheduler -> UnCLIPScheduler
      
      matches existing unclip naming better
      
      * [docs] SchedulingUnCLIP
      
      * [docs] UnCLIPTextProjModel
      
      * refactor
      
      * finish licenses
      
      * rename all to attention_mask and prep in models
      
      * more renaming
      
      * don't expose unused configs
      
      * final renaming fixes
      
      * remove x attn mask when not necessary
      
      * configure kakao script to use new class embedding config
      
      * fix copies
      
      * [tests] UnCLIPScheduler
      
      * finish x attn
      
      * finish
      
      * remove more
      
      * rename condition blocks
      
      * clean more
      
      * Apply suggestions from code review
      
      * up
      
      * fix
      
      * [tests] UnCLIPPipelineFastTests
      
      * remove unused imports
      
      * [tests] UnCLIPPipelineIntegrationTests
      
      * correct
      
      * make style
      Co-authored-by: default avatarPatrick von Platen <patrick.v.platen@gmail.com>
      2dcf64b7
  9. 07 Dec, 2022 2 commits
  10. 05 Dec, 2022 1 commit
  11. 02 Dec, 2022 1 commit
  12. 25 Nov, 2022 1 commit
  13. 24 Nov, 2022 2 commits
    • Anton Lozhkov's avatar
      Support SD2 attention slicing (#1397) · d50e3217
      Anton Lozhkov authored
      * Support SD2 attention slicing
      
      * Support SD2 attention slicing
      
      * Add more copies
      
      * Use attn_num_head_channels in blocks
      
      * fix-copies
      
      * Update tests
      
      * fix imports
      d50e3217
    • Suraj Patil's avatar
      Adapt UNet2D for supre-resolution (#1385) · cecdd8bd
      Suraj Patil authored
      * allow disabling self attention
      
      * add class_embedding
      
      * fix copies
      
      * fix condition
      
      * fix copies
      
      * do_self_attention -> only_cross_attention
      
      * fix copies
      
      * num_classes -> num_class_embeds
      
      * fix default value
      cecdd8bd
  14. 23 Nov, 2022 2 commits
    • Suraj Patil's avatar
      update unet2d (#1376) · f07a16e0
      Suraj Patil authored
      * boom boom
      
      * remove duplicate arg
      
      * add use_linear_proj arg
      
      * fix copies
      
      * style
      
      * add fast tests
      
      * use_linear_proj -> use_linear_projection
      f07a16e0
    • Patrick von Platen's avatar
      [Versatile Diffusion] Add versatile diffusion model (#1283) · 2625fb59
      Patrick von Platen authored
      
      
      * up
      
      * convert dual unet
      
      * revert dual attn
      
      * adapt for vd-official
      
      * test the full pipeline
      
      * mixed inference
      
      * mixed inference for text2img
      
      * add image prompting
      
      * fix clip norm
      
      * split text2img and img2img
      
      * fix format
      
      * refactor text2img
      
      * mega pipeline
      
      * add optimus
      
      * refactor image var
      
      * wip text_unet
      
      * text unet end to end
      
      * update tests
      
      * reshape
      
      * fix image to text
      
      * add some first docs
      
      * dual guided pipeline
      
      * fix token ratio
      
      * propose change
      
      * dual transformer as a native module
      
      * DualTransformer(nn.Module)
      
      * DualTransformer(nn.Module)
      
      * correct unconditional image
      
      * save-load with mega pipeline
      
      * remove image to text
      
      * up
      
      * uP
      
      * fix
      
      * up
      
      * final fix
      
      * remove_unused_weights
      
      * test updates
      
      * save progress
      
      * uP
      
      * fix dual prompts
      
      * some fixes
      
      * finish
      
      * style
      
      * finish renaming
      
      * up
      
      * fix
      
      * fix
      
      * fix
      
      * finish
      Co-authored-by: default avataranton-l <anton@huggingface.co>
      2625fb59
  15. 04 Nov, 2022 1 commit
  16. 03 Nov, 2022 1 commit
    • Will Berman's avatar
      VQ-diffusion (#658) · ef2ea33c
      Will Berman authored
      
      
      * Changes for VQ-diffusion VQVAE
      
      Add specify dimension of embeddings to VQModel:
      `VQModel` will by default set the dimension of embeddings to the number
      of latent channels. The VQ-diffusion VQVAE has a smaller
      embedding dimension, 128, than number of latent channels, 256.
      
      Add AttnDownEncoderBlock2D and AttnUpDecoderBlock2D to the up and down
      unet block helpers. VQ-diffusion's VQVAE uses those two block types.
      
      * Changes for VQ-diffusion transformer
      
      Modify attention.py so SpatialTransformer can be used for
      VQ-diffusion's transformer.
      
      SpatialTransformer:
      - Can now operate over discrete inputs (classes of vector embeddings) as well as continuous.
      - `in_channels` was made optional in the constructor so two locations where it was passed as a positional arg were moved to kwargs
      - modified forward pass to take optional timestep embeddings
      
      ImagePositionalEmbeddings:
      - added to provide positional embeddings to discrete inputs for latent pixels
      
      BasicTransformerBlock:
      - norm layers were made configurable so that the VQ-diffusion could use AdaLayerNorm with timestep embeddings
      - modified forward pass to take optional timestep embeddings
      
      CrossAttention:
      - now may optionally take a bias parameter for its query, key, and value linear layers
      
      FeedForward:
      - Internal layers are now configurable
      
      ApproximateGELU:
      - Activation function in VQ-diffusion's feedforward layer
      
      AdaLayerNorm:
      - Norm layer modified to incorporate timestep embeddings
      
      * Add VQ-diffusion scheduler
      
      * Add VQ-diffusion pipeline
      
      * Add VQ-diffusion convert script to diffusers
      
      * Add VQ-diffusion dummy objects
      
      * Add VQ-diffusion markdown docs
      
      * Add VQ-diffusion tests
      
      * some renaming
      
      * some fixes
      
      * more renaming
      
      * correct
      
      * fix typo
      
      * correct weights
      
      * finalize
      
      * fix tests
      
      * Apply suggestions from code review
      Co-authored-by: default avatarAnton Lozhkov <aglozhkov@gmail.com>
      
      * Apply suggestions from code review
      Co-authored-by: default avatarPedro Cuenca <pedro@huggingface.co>
      
      * finish
      
      * finish
      
      * up
      Co-authored-by: default avatarPatrick von Platen <patrick.v.platen@gmail.com>
      Co-authored-by: default avatarAnton Lozhkov <aglozhkov@gmail.com>
      Co-authored-by: default avatarPedro Cuenca <pedro@huggingface.co>
      ef2ea33c
  17. 02 Nov, 2022 1 commit
    • MatthieuTPHR's avatar
      Up to 2x speedup on GPUs using memory efficient attention (#532) · 98c42134
      MatthieuTPHR authored
      
      
      * 2x speedup using memory efficient attention
      
      * remove einops dependency
      
      * Swap K, M in op instantiation
      
      * Simplify code, remove unnecessary maybe_init call and function, remove unused self.scale parameter
      
      * make xformers a soft dependency
      
      * remove one-liner functions
      
      * change one letter variable to appropriate names
      
      * Remove Env variable dependency, remove MemoryEfficientCrossAttention class and use enable_xformers_memory_efficient_attention method
      
      * Add memory efficient attention toggle to img2img and inpaint pipelines
      
      * Clearer management of xformers' availability
      
      * update optimizations markdown to add info about memory efficient attention
      
      * add benchmarks for TITAN RTX
      
      * More detailed explanation of how the mem eff benchmark were ran
      
      * Removing autocast from optimization markdown
      
      * import_utils: import torch only if is available
      Co-authored-by: default avatarNouamane Tazi <nouamane98@gmail.com>
      98c42134
  18. 31 Oct, 2022 1 commit
  19. 25 Oct, 2022 1 commit
  20. 12 Oct, 2022 1 commit
  21. 30 Sep, 2022 1 commit
  22. 22 Sep, 2022 1 commit
    • Suraj Patil's avatar
      [UNet2DConditionModel] add gradient checkpointing (#461) · e7120bae
      Suraj Patil authored
      * add grad ckpt to downsample blocks
      
      * make it work
      
      * don't pass gradient_checkpointing to upsample block
      
      * add tests for UNet2DConditionModel
      
      * add test_gradient_checkpointing
      
      * add gradient_checkpointing for up and down blocks
      
      * add functions to enable and disable grad ckpt
      
      * remove the forward argument
      
      * better naming
      
      * make supports_gradient_checkpointing private
      e7120bae
  23. 16 Sep, 2022 1 commit
  24. 15 Sep, 2022 1 commit
  25. 08 Sep, 2022 1 commit
  26. 06 Sep, 2022 1 commit
  27. 04 Sep, 2022 1 commit
  28. 25 Aug, 2022 1 commit
  29. 10 Aug, 2022 1 commit
  30. 05 Aug, 2022 1 commit
  31. 28 Jul, 2022 1 commit
  32. 20 Jul, 2022 1 commit
    • Patrick von Platen's avatar
      Big Model Renaming (#109) · 9c3820d0
      Patrick von Platen authored
      * up
      
      * change model name
      
      * renaming
      
      * more changes
      
      * up
      
      * up
      
      * up
      
      * save checkpoint
      
      * finish api / naming
      
      * finish config renaming
      
      * rename all weights
      
      * finish really
      9c3820d0
  33. 19 Jul, 2022 2 commits
  34. 18 Jul, 2022 1 commit
  35. 14 Jul, 2022 2 commits