"docs/vscode:/vscode.git/clone" did not exist on "0fc280b06cd0cc562281b55b0b70248b119f575b"
  1. 01 Mar, 2023 1 commit
  2. 16 Feb, 2023 1 commit
  3. 07 Feb, 2023 1 commit
    • YiYi Xu's avatar
      Stable Diffusion Latent Upscaler (#2059) · 1051ca81
      YiYi Xu authored
      
      
      * Modify UNet2DConditionModel
      
      - allow skipping mid_block
      
      - adding a norm_group_size argument so that we can set the `num_groups` for group norm using `num_channels//norm_group_size`
      
      - allow user to set dimension for the timestep embedding (`time_embed_dim`)
      
      - the kernel_size for `conv_in` and `conv_out` is now configurable
      
      - add random fourier feature layer (`GaussianFourierProjection`) for `time_proj`
      
      - allow user to add the time and class embeddings before passing through the projection layer together - `time_embedding(t_emb + class_label))`
      
      - added 2 arguments `attn1_types` and `attn2_types`
      
        * currently we have argument `only_cross_attention`: when it's set to `True`, we will have a to the
      `BasicTransformerBlock` block with 2 cross-attention , otherwise we
      get a self-attention followed by a cross-attention; in k-upscaler, we need to have blocks that include just one cross-attention, or self-attention -> cross-attention;
      so I added `attn1_types` and `attn2_types` to the unet's argument list to allow user specify the attention types for the 2 positions in each block;  note that I stil kept
      the `only_cross_attention` argument for unet for easy configuration, but it will be converted to `attn1_type` and `attn2_type` when passing down to the down blocks
      
      - the position of downsample layer and upsample layer is now configurable
      
      - in k-upscaler unet, there is only one skip connection per each up/down block (instead of each layer in stable diffusion unet), added `skip_freq = "block"` to support
      this use case
      
      - if user passes attention_mask to unet, it will prepare the mask and pass a flag to cross attention processer to skip the `prepare_attention_mask` step
      inside cross attention block
      
      add up/down blocks for k-upscaler
      
      modify CrossAttention class
      
      - make the `dropout` layer in `to_out` optional
      
      - `use_conv_proj` - use conv instead of linear for all projection layers (i.e. `to_q`, `to_k`, `to_v`, `to_out`) whenever possible. note that when it's used to do cross
      attention, to_k, to_v has to be linear because the `encoder_hidden_states` is not 2d
      
      - `cross_attention_norm` - add an optional layernorm on encoder_hidden_states
      
      - `attention_dropout`: add an optional dropout on attention score
      
      adapt BasicTransformerBlock
      
      - add an ada groupnorm layer  to conditioning attention input with timestep embedding
      
      - allow skipping the FeedForward layer in between the attentions
      
      - replaced the only_cross_attention argument with attn1_type and attn2_type for more flexible configuration
      
      update timestep embedding: add new act_fn  gelu and an optional act_2
      
      modified ResnetBlock2D
      
      - refactored with AdaGroupNorm class (the timestep scale shift normalization)
      
      - add `mid_channel` argument - allow the first conv to have a different output dimension from the second conv
      
      - add option to use input AdaGroupNorm on the input instead of groupnorm
      
      - add options to add a dropout layer after each conv
      
      - allow user to set the bias in conv_shortcut (needed for k-upscaler)
      
      - add gelu
      
      adding conversion script for k-upscaler unet
      
      add pipeline
      
      * fix attention mask
      
      * fix a typo
      
      * fix a bug
      
      * make sure model can be used with GPU
      
      * make pipeline work with fp16
      
      * fix an error in BasicTransfomerBlock
      
      * make style
      
      * fix typo
      
      * some more fixes
      
      * uP
      
      * up
      
      * correct more
      
      * some clean-up
      
      * clean time proj
      
      * up
      
      * uP
      
      * more changes
      
      * remove the upcast_attention=True from unet config
      
      * remove attn1_types, attn2_types etc
      
      * fix
      
      * revert incorrect changes up/down samplers
      
      * make style
      
      * remove outdated files
      
      * Apply suggestions from code review
      
      * attention refactor
      
      * refactor cross attention
      
      * Apply suggestions from code review
      
      * update
      
      * up
      
      * update
      
      * Apply suggestions from code review
      
      * finish
      
      * Update src/diffusers/models/cross_attention.py
      
      * more fixes
      
      * up
      
      * up
      
      * up
      
      * finish
      
      * more corrections of conversion state
      
      * act_2 -> act_2_fn
      
      * remove dropout_after_conv from ResnetBlock2D
      
      * make style
      
      * simplify KAttentionBlock
      
      * add fast test for latent upscaler pipeline
      
      * add slow test
      
      * slow test fp16
      
      * make style
      
      * add doc string for pipeline_stable_diffusion_latent_upscale
      
      * add api doc page for latent upscaler pipeline
      
      * deprecate attention mask
      
      * clean up embeddings
      
      * simplify resnet
      
      * up
      
      * clean up resnet
      
      * up
      
      * correct more
      
      * up
      
      * up
      
      * improve a bit more
      
      * correct more
      
      * more clean-ups
      
      * Update docs/source/en/api/pipelines/stable_diffusion/latent_upscale.mdx
      Co-authored-by: default avatarPatrick von Platen <patrick.v.platen@gmail.com>
      
      * Update docs/source/en/api/pipelines/stable_diffusion/latent_upscale.mdx
      Co-authored-by: default avatarPatrick von Platen <patrick.v.platen@gmail.com>
      
      * add docstrings for new unet config
      
      * Update src/diffusers/pipelines/stable_diffusion/pipeline_stable_diffusion_latent_upscale.py
      Co-authored-by: default avatarPatrick von Platen <patrick.v.platen@gmail.com>
      
      * Update src/diffusers/pipelines/stable_diffusion/pipeline_stable_diffusion_latent_upscale.py
      Co-authored-by: default avatarPatrick von Platen <patrick.v.platen@gmail.com>
      
      * # Copied from
      
      * encode the image if not latent
      
      * remove force casting vae to fp32
      
      * fix
      
      * add comments about preconditioning parameters from k-diffusion paper
      
      * attn1_type, attn2_type -> add_self_attention
      
      * clean up get_down_block and get_up_block
      
      * fix
      
      * fixed a typo(?) in ada group norm
      
      * update slice attention processer for cross attention
      
      * update slice
      
      * fix fast test
      
      * update the checkpoint
      
      * finish tests
      
      * fix-copies
      
      * fix-copy for modeling_text_unet.py
      
      * make style
      
      * make style
      
      * fix f-string
      
      * Update src/diffusers/pipelines/stable_diffusion/pipeline_stable_diffusion_latent_upscale.py
      Co-authored-by: default avatarPatrick von Platen <patrick.v.platen@gmail.com>
      
      * fix import
      
      * correct changes
      
      * fix resnet
      
      * make fix-copies
      
      * correct euler scheduler
      
      * add missing #copied from for preprocess
      
      * revert
      
      * fix
      
      * fix copies
      
      * Update docs/source/en/api/pipelines/stable_diffusion/latent_upscale.mdx
      Co-authored-by: default avatarPedro Cuenca <pedro@huggingface.co>
      
      * Update docs/source/en/api/pipelines/stable_diffusion/latent_upscale.mdx
      Co-authored-by: default avatarPedro Cuenca <pedro@huggingface.co>
      
      * Update docs/source/en/api/pipelines/stable_diffusion/latent_upscale.mdx
      Co-authored-by: default avatarPedro Cuenca <pedro@huggingface.co>
      
      * Update docs/source/en/api/pipelines/stable_diffusion/latent_upscale.mdx
      Co-authored-by: default avatarPedro Cuenca <pedro@huggingface.co>
      
      * Update src/diffusers/models/cross_attention.py
      Co-authored-by: default avatarPedro Cuenca <pedro@huggingface.co>
      
      * Update src/diffusers/pipelines/stable_diffusion/pipeline_stable_diffusion_latent_upscale.py
      Co-authored-by: default avatarPedro Cuenca <pedro@huggingface.co>
      
      * Update src/diffusers/pipelines/stable_diffusion/pipeline_stable_diffusion_latent_upscale.py
      Co-authored-by: default avatarPedro Cuenca <pedro@huggingface.co>
      
      * clean up conversion script
      
      * KDownsample2d,KUpsample2d -> KDownsample2D,KUpsample2D
      
      * more
      
      * Update src/diffusers/models/unet_2d_condition.py
      Co-authored-by: default avatarPedro Cuenca <pedro@huggingface.co>
      
      * remove prepare_extra_step_kwargs
      
      * Update src/diffusers/pipelines/stable_diffusion/pipeline_stable_diffusion_latent_upscale.py
      Co-authored-by: default avatarPedro Cuenca <pedro@huggingface.co>
      
      * Update src/diffusers/pipelines/stable_diffusion/pipeline_stable_diffusion_latent_upscale.py
      Co-authored-by: default avatarPatrick von Platen <patrick.v.platen@gmail.com>
      
      * fix a typo in timestep embedding
      
      * remove num_image_per_prompt
      
      * fix fasttest
      
      * make style + fix-copies
      
      * fix
      
      * fix xformer test
      
      * fix style
      
      * doc string
      
      * make style
      
      * fix-copies
      
      * docstring for time_embedding_norm
      
      * make style
      
      * final finishes
      
      * make fix-copies
      
      * fix tests
      
      ---------
      Co-authored-by: default avataryiyixuxu <yixu@yis-macbook-pro.lan>
      Co-authored-by: default avatarPatrick von Platen <patrick.v.platen@gmail.com>
      Co-authored-by: default avatarPedro Cuenca <pedro@huggingface.co>
      1051ca81
  4. 27 Jan, 2023 2 commits
  5. 17 Jan, 2023 1 commit
    • Kashif Rasul's avatar
      DiT Pipeline (#1806) · 37d113cc
      Kashif Rasul authored
      
      
      * added dit model
      
      * import
      
      * initial pipeline
      
      * initial convert script
      
      * initial pipeline
      
      * make style
      
      * raise valueerror
      
      * single function
      
      * rename classes
      
      * use DDIMScheduler
      
      * timesteps embedder
      
      * samples to cpu
      
      * fix var names
      
      * fix numpy type
      
      * use timesteps class for proj
      
      * fix typo
      
      * fix arg name
      
      * flip_sin_to_cos and better var names
      
      * fix C shape cal
      
      * make style
      
      * remove unused imports
      
      * cleanup
      
      * add back patch_size
      
      * initial dit doc
      
      * typo
      
      * Update docs/source/api/pipelines/dit.mdx
      Co-authored-by: default avatarSuraj Patil <surajp815@gmail.com>
      
      * added copyright license headers
      
      * added example usage and toc
      
      * fix variable names asserts
      
      * remove comment
      
      * added docs
      
      * fix typo
      
      * upstream changes
      
      * set proper device for drop_ids
      
      * added initial dit pipeline test
      
      * update docs
      
      * fix imports
      
      * make fix-copies
      
      * isort
      
      * fix imports
      
      * get rid of more magic numbers
      
      * fix code when guidance is off
      
      * remove block_kwargs
      
      * cleanup script
      
      * removed to_2tuple
      
      * use FeedForward class instead of another MLP
      
      * style
      
      * work on mergint DiTBlock with BasicTransformerBlock
      
      * added missing final_dropout and args to BasicTransformerBlock
      
      * use norm from block
      
      * fix arg
      
      * remove unused arg
      
      * fix call to class_embedder
      
      * use timesteps
      
      * make style
      
      * attn_output gets multiplied
      
      * removed commented code
      
      * use Transformer2D
      
      * use self.is_input_patches
      
      * fix flags
      
      * fixed conversion to use Transformer2DModel
      
      * fixes for pipeline
      
      * remove dit.py
      
      * fix timesteps device
      
      * use randn_tensor and fix fp16 inf.
      
      * timesteps_emb already the right dtype
      
      * fix dit test class
      
      * fix test and style
      
      * fix norm2 usage in vq-diffusion
      
      * added author names to pipeline and lmagenet labels link
      
      * fix tests
      
      * use norm_type as string
      
      * rename dit to transformer
      
      * fix name
      
      * fix test
      
      * set  norm_type = "layer" by default
      
      * fix tests
      
      * do not skip common tests
      
      * Update src/diffusers/models/attention.py
      Co-authored-by: default avatarSuraj Patil <surajp815@gmail.com>
      
      * revert AdaLayerNorm API
      
      * fix norm_type name
      
      * make sure all components are in eval mode
      
      * revert norm2 API
      
      * compact
      
      * finish deprecation
      
      * add slow tests
      
      * remove @
      
      * refactor some stuff
      
      * upload
      
      * Update src/diffusers/pipelines/dit/pipeline_dit.py
      
      * finish more
      
      * finish docs
      
      * improve docs
      
      * finish docs
      Co-authored-by: default avatarSuraj Patil <surajp815@gmail.com>
      Co-authored-by: default avatarWilliam Berman <WLBberman@gmail.com>
      Co-authored-by: default avatarPatrick von Platen <patrick.v.platen@gmail.com>
      37d113cc
  6. 16 Jan, 2023 1 commit
  7. 04 Jan, 2023 1 commit
    • Patrick von Platen's avatar
      Improve reproduceability 2/3 (#1906) · 9b638548
      Patrick von Platen authored
      * [Repro] Correct reproducability
      
      * up
      
      * up
      
      * uP
      
      * up
      
      * need better image
      
      * allow conversion from no state dict checkpoints
      
      * up
      
      * up
      
      * up
      
      * up
      
      * check tensors
      
      * check tensors
      
      * check tensors
      
      * check tensors
      
      * next try
      
      * up
      
      * up
      
      * better name
      
      * up
      
      * up
      
      * Apply suggestions from code review
      
      * correct more
      
      * up
      
      * replace all torch randn
      
      * fix
      
      * correct
      
      * correct
      
      * finish
      
      * fix more
      
      * up
      9b638548
  8. 02 Dec, 2022 1 commit
  9. 30 Nov, 2022 1 commit
  10. 28 Nov, 2022 1 commit
    • Patrick von Platen's avatar
      Add 2nd order heun scheduler (#1336) · 4c54519e
      Patrick von Platen authored
      * Add heun
      
      * Finish first version of heun
      
      * remove bogus
      
      * finish
      
      * finish
      
      * improve
      
      * up
      
      * up
      
      * fix more
      
      * change progress bar
      
      * Update src/diffusers/pipelines/stable_diffusion/pipeline_stable_diffusion.py
      
      * finish
      
      * up
      
      * up
      
      * up
      4c54519e
  11. 25 Nov, 2022 1 commit
    • Pedro Cuenca's avatar
      Deprecate `predict_epsilon` (#1393) · d52388f4
      Pedro Cuenca authored
      
      
      * Adapt ddpm, ddpmsolver to prediction_type.
      
      * Deprecate predict_epsilon in __init__.
      
      * Bring FlaxDDIMScheduler up to date with DDIMScheduler.
      
      * Set prediction_type as an ivar for consistency.
      
      * Convert pipeline_ddpm
      
      * Adapt tests.
      
      * Adapt unconditional training script.
      
      * Adapt BitDiffusion example.
      
      * Add missing kwargs in dpmsolver_multistep
      
      * Ugly workaround to accept deprecated predict_epsilon when loading
      schedulers using from_pretrained.
      
      * make style
      
      * Remove import no longer in use.
      
      * Apply suggestions from code review
      Co-authored-by: default avatarPatrick von Platen <patrick.v.platen@gmail.com>
      
      * Use config.prediction_type everywhere
      
      * Add a couple of Flax prediction type tests.
      
      * make style
      
      * fix register deprecated arg
      Co-authored-by: default avatarPatrick von Platen <patrick.v.platen@gmail.com>
      d52388f4
  12. 24 Nov, 2022 1 commit
  13. 22 Nov, 2022 1 commit
  14. 15 Nov, 2022 1 commit
  15. 09 Nov, 2022 1 commit
  16. 08 Nov, 2022 1 commit
    • Pedro Cuenca's avatar
      MPS schedulers: don't use float64 (#1169) · 813744e5
      Pedro Cuenca authored
      * Schedulers: don't use float64 on mps
      
      * Test set_timesteps() on device (float schedulers).
      
      * SD pipeline: use device in set_timesteps.
      
      * SD in-painting pipeline: use device in set_timesteps.
      
      * Tests: fix mps crashes.
      
      * Skip test_load_pipeline_from_git on mps.
      
      Not compatible with float16.
      
      * Use device.type instead of str in Euler schedulers.
      813744e5
  17. 06 Nov, 2022 1 commit
    • Cheng Lu's avatar
      Add multistep DPM-Solver discrete scheduler (#1132) · b4a1ed85
      Cheng Lu authored
      
      
      * add dpmsolver discrete pytorch scheduler
      
      * fix some typos in dpm-solver pytorch
      
      * add dpm-solver pytorch in stable-diffusion pipeline
      
      * add jax/flax version dpm-solver
      
      * change code style
      
      * change code style
      
      * add docs
      
      * add `add_noise` method for dpmsolver
      
      * add pytorch unit test for dpmsolver
      
      * add dummy object for pytorch dpmsolver
      
      * Update src/diffusers/schedulers/scheduling_dpmsolver_discrete.py
      Co-authored-by: default avatarSuraj Patil <surajp815@gmail.com>
      
      * Update tests/test_config.py
      Co-authored-by: default avatarSuraj Patil <surajp815@gmail.com>
      
      * Update tests/test_config.py
      Co-authored-by: default avatarSuraj Patil <surajp815@gmail.com>
      
      * resolve the code comments
      
      * rename the file
      
      * change class name
      
      * fix code style
      
      * add auto docs for dpmsolver multistep
      
      * add more explanations for the stabilizing trick (for steps < 15)
      
      * delete the dummy file
      
      * change the API name of predict_epsilon, algorithm_type and solver_type
      
      * add compatible lists
      Co-authored-by: default avatarSuraj Patil <surajp815@gmail.com>
      b4a1ed85
  18. 04 Nov, 2022 1 commit
  19. 03 Nov, 2022 1 commit
  20. 31 Oct, 2022 2 commits
  21. 27 Oct, 2022 1 commit
    • Pedro Cuenca's avatar
      Continuation of #942: additional float64 failure (#996) · 1d04e1b4
      Pedro Cuenca authored
      * Add failing test for #940.
      
      * Do not use torch.float64 in mps.
      
      * style
      
      * Temporarily skip add_noise for IPNDMScheduler.
      
      Until #990 is addressed.
      
      * Fix additional float64 error in mps.
      
      * Improve add_noise test
      
      * Slight edit – I think it's clearer this way.
      1d04e1b4
  22. 26 Oct, 2022 1 commit
  23. 20 Oct, 2022 2 commits
  24. 14 Oct, 2022 1 commit
  25. 07 Oct, 2022 2 commits
  26. 06 Oct, 2022 2 commits
  27. 05 Oct, 2022 1 commit
  28. 03 Oct, 2022 1 commit
  29. 30 Sep, 2022 1 commit
    • Nouamane Tazi's avatar
      Optimize Stable Diffusion (#371) · 9ebaea54
      Nouamane Tazi authored
      * initial commit
      
      * make UNet stream capturable
      
      * try to fix noise_pred value
      
      * remove cuda graph and keep NB
      
      * non blocking unet with PNDMScheduler
      
      * make timesteps np arrays for pndm scheduler
      because lists don't get formatted to tensors in `self.set_format`
      
      * make max async in pndm
      
      * use channel last format in unet
      
      * avoid moving timesteps device in each unet call
      
      * avoid memcpy op in `get_timestep_embedding`
      
      * add `channels_last` kwarg to `DiffusionPipeline.from_pretrained`
      
      * update TODO
      
      * replace `channels_last` kwarg with `memory_format` for more generality
      
      * revert the channels_last changes to leave it for another PR
      
      * remove non_blocking when moving input ids to device
      
      * remove blocking from all .to() operations at beginning of pipeline
      
      * fix merging
      
      * fix merging
      
      * model can run in other precisions without autocast
      
      * attn refactoring
      
      * Revert "attn refactoring"
      
      This reverts commit 0c70c0e189cd2c4d8768274c9fcf5b940ee310fb.
      
      * remove restriction to run conv_norm in fp32
      
      * use `baddbmm` instead of `matmul`for better in attention for better perf
      
      * removing all reshapes to test perf
      
      * Revert "removing all reshapes to test perf"
      
      This reverts commit 006ccb8a8c6bc7eb7e512392e692a29d9b1553cd.
      
      * add shapes comments
      
      * hardcore whats needed for jitting
      
      * Revert "hardcore whats needed for jitting"
      
      This reverts commit 2fa9c698eae2890ac5f8e367ca80532ecf94df9a.
      
      * Revert "remove restriction to run conv_norm in fp32"
      
      This reverts commit cec592890c32da3d1b78d38b49e4307aedf459b9.
      
      * revert using baddmm in attention's forward
      
      * cleanup comment
      
      * remove restriction to run conv_norm in fp32. no quality loss was noticed
      
      This reverts commit cc9bc1339c998ebe9e7d733f910c6d72d9792213.
      
      * add more optimizations techniques to docs
      
      * Revert "add shapes comments"
      
      This reverts commit 31c58eadb8892f95478cdf05229adf678678c5f4.
      
      * apply suggestions
      
      * make quality
      
      * apply suggestions
      
      * styling
      
      * `scheduler.timesteps` are now arrays so we dont need .to()
      
      * remove useless .type()
      
      * use mean instead of max in `test_stable_diffusion_inpaint_pipeline_k_lms`
      
      * move scheduler timestamps to correct device if tensors
      
      * add device to `set_timesteps` in LMSD scheduler
      
      * `self.scheduler.set_timesteps` now uses device arg for schedulers that accept it
      
      * quick fix
      
      * styling
      
      * remove kwargs from schedulers `set_timesteps`
      
      * revert to using max in K-LMS inpaint pipeline test
      
      * Revert "`self.scheduler.set_timesteps` now uses device arg for schedulers that accept it"
      
      This reverts commit 00d5a51e5c20d8d445c8664407ef29608106d899.
      
      * move timesteps to correct device before loop in SD pipeline
      
      * apply previous fix to other SD pipelines
      
      * UNet now accepts tensor timesteps even on wrong device, to avoid errors
      - it shouldnt affect performance if timesteps are alrdy on correct device
      - it does slow down performance if they're on the wrong device
      
      * fix pipeline when timesteps are arrays with strides
      9ebaea54
  30. 29 Sep, 2022 1 commit
  31. 28 Sep, 2022 1 commit
  32. 27 Sep, 2022 3 commits
    • Kashif Rasul's avatar
      [Pytorch] add dep. warning for pytorch schedulers (#651) · 85494e88
      Kashif Rasul authored
      * add dep. warning for schedulers
      
      * fix format
      85494e88
    • Kashif Rasul's avatar
      [Pytorch] Pytorch only schedulers (#534) · bd8df2da
      Kashif Rasul authored
      
      
      * pytorch only schedulers
      
      * fix style
      
      * remove match_shape
      
      * pytorch only ddpm
      
      * remove SchedulerMixin
      
      * remove numpy from karras_ve
      
      * fix types
      
      * remove numpy from lms_discrete
      
      * remove numpy from pndm
      
      * fix typo
      
      * remove mixin and numpy from sde_vp and ve
      
      * remove remaining tensor_format
      
      * fix style
      
      * sigmas has to be torch tensor
      
      * removed set_format in readme
      
      * remove set format from docs
      
      * remove set_format from pipelines
      
      * update tests
      
      * fix typo
      
      * continue to use mixin
      
      * fix imports
      
      * removed unsed imports
      
      * match shape instead of assuming image shapes
      
      * remove import typo
      
      * update call to add_noise
      
      * use math instead of numpy
      
      * fix t_index
      
      * removed commented out numpy tests
      
      * timesteps needs to be discrete
      
      * cast timesteps to int in flax scheduler too
      
      * fix device mismatch issue
      
      * small fix
      
      * Update src/diffusers/schedulers/scheduling_pndm.py
      Co-authored-by: default avatarPatrick von Platen <patrick.v.platen@gmail.com>
      bd8df2da
    • Pedro Cuenca's avatar
      c070e5f0
  33. 22 Sep, 2022 1 commit
    • Jonathan Whitaker's avatar
      Adding pred_original_sample to SchedulerOutput for some samplers (#614) · 91db8189
      Jonathan Whitaker authored
      * Adding pred_original_sample to SchedulerOutput of DDPMScheduler, DDIMScheduler, LMSDiscreteScheduler, KarrasVeScheduler step methods so we can access the predicted denoised outputs
      
      * Gave DDPMScheduler, DDIMScheduler and LMSDiscreteScheduler their own output dataclasses so the default SchedulerOutput in scheduling_utils does not need pred_original_sample as an optional extra
      
      * Reordered library imports to follow standard
      
      * didnt get import order quite right apparently
      
      * Forgot to change name of LMSDiscreteSchedulerOutput
      
      * Aha, needed some extra libs for make style to fully work
      91db8189