1. 11 Mar, 2025 1 commit
  2. 07 Mar, 2025 2 commits
  3. 03 Mar, 2025 1 commit
  4. 02 Mar, 2025 1 commit
  5. 26 Feb, 2025 1 commit
  6. 24 Feb, 2025 1 commit
  7. 22 Feb, 2025 1 commit
  8. 21 Feb, 2025 2 commits
  9. 20 Feb, 2025 1 commit
  10. 15 Feb, 2025 1 commit
    • Yuxuan Zhang's avatar
      CogView4 (supports different length c and uc) (#10649) · d90cd362
      Yuxuan Zhang authored
      
      
      * init
      
      * encode with glm
      
      * draft schedule
      
      * feat(scheduler): Add CogView scheduler implementation
      
      * feat(embeddings): add CogView 2D rotary positional embedding
      
      * 1
      
      * Update pipeline_cogview4.py
      
      * fix the timestep init and sigma
      
      * update latent
      
      * draft patch(not work)
      
      * fix
      
      * [WIP][cogview4]: implement initial CogView4 pipeline
      
      Implement the basic CogView4 pipeline structure with the following changes:
      - Add CogView4 pipeline implementation
      - Implement DDIM scheduler for CogView4
      - Add CogView3Plus transformer architecture
      - Update embedding models
      
      Current limitations:
      - CFG implementation uses padding for sequence length alignment
      - Need to verify transformer inference alignment with Megatron
      
      TODO:
      - Consider separate forward passes for condition/uncondition
        instead of padding approach
      
      * [WIP][cogview4][refactor]: Split condition/uncondition forward pass in CogView4 pipeline
      
      Split the forward pass for conditional and unconditional predictions in the CogView4 pipeline to match the original implementation. The noise prediction is now done separately for each case before combining them for guidance. However, the results still need improvement.
      
      This is a work in progress as the generated images are not yet matching expected quality.
      
      * use with -2 hidden state
      
      * remove text_projector
      
      * 1
      
      * [WIP] Add tensor-reload to align input from transformer block
      
      * [WIP] for older glm
      
      * use with cogview4 transformers forward twice of u and uc
      
      * Update convert_cogview4_to_diffusers.py
      
      * remove this
      
      * use main example
      
      * change back
      
      * reset
      
      * setback
      
      * back
      
      * back 4
      
      * Fix qkv conversion logic for CogView4 to Diffusers format
      
      * back5
      
      * revert to sat to cogview4 version
      
      * update a new convert from megatron
      
      * [WIP][cogview4]: implement CogView4 attention processor
      
      Add CogView4AttnProcessor class for implementing scaled dot-product attention
      with rotary embeddings for the CogVideoX model. This processor concatenates
      encoder and hidden states, applies QKV projections and RoPE, but does not
      include spatial normalization.
      
      TODO:
      - Fix incorrect QKV projection weights
      - Resolve ~25% error in RoPE implementation compared to Megatron
      
      * [cogview4] implement CogView4 transformer block
      
      Implement CogView4 transformer block following the Megatron architecture:
      - Add multi-modulate and multi-gate mechanisms for adaptive layer normalization
      - Implement dual-stream attention with encoder-decoder structure
      - Add feed-forward network with GELU activation
      - Support rotary position embeddings for image tokens
      
      The implementation follows the original CogView4 architecture while adapting
      it to work within the diffusers framework.
      
      * with new attn
      
      * [bugfix] fix dimension mismatch in CogView4 attention
      
      * [cogview4][WIP]: update final normalization in CogView4 transformer
      
      Refactored the final normalization layer in CogView4 transformer to use separate layernorm and AdaLN operations instead of combined AdaLayerNormContinuous. This matches the original implementation but needs validation.
      
      Needs verification against reference implementation.
      
      * 1
      
      * put back
      
      * Update transformer_cogview4.py
      
      * change time_shift
      
      * Update pipeline_cogview4.py
      
      * change timesteps
      
      * fix
      
      * change text_encoder_id
      
      * [cogview4][rope] align RoPE implementation with Megatron
      
      - Implement apply_rope method in attention processor to match Megatron's implementation
      - Update position embeddings to ensure compatibility with Megatron-style rotary embeddings
      - Ensure consistent rotary position encoding across attention layers
      
      This change improves compatibility with Megatron-based models and provides
      better alignment with the original implementation's positional encoding approach.
      
      * [cogview4][bugfix] apply silu activation to time embeddings in CogView4
      
      Applied silu activation to time embeddings before splitting into conditional
      and unconditional parts in CogView4Transformer2DModel. This matches the
      original implementation and helps ensure correct time conditioning behavior.
      
      * [cogview4][chore] clean up pipeline code
      
      - Remove commented out code and debug statements
      - Remove unused retrieve_timesteps function
      - Clean up code formatting and documentation
      
      This commit focuses on code cleanup in the CogView4 pipeline implementation, removing unnecessary commented code and improving readability without changing functionality.
      
      * [cogview4][scheduler] Implement CogView4 scheduler and pipeline
      
      * now It work
      
      * add timestep
      
      * batch
      
      * change convert scipt
      
      * refactor pt. 1; make style
      
      * refactor pt. 2
      
      * refactor pt. 3
      
      * add tests
      
      * make fix-copies
      
      * update toctree.yml
      
      * use flow match scheduler instead of custom
      
      * remove scheduling_cogview.py
      
      * add tiktoken to test dependencies
      
      * Update src/diffusers/models/embeddings.py
      Co-authored-by: default avatarYiYi Xu <yixu310@gmail.com>
      
      * apply suggestions from review
      
      * use diffusers apply_rotary_emb
      
      * update flow match scheduler to accept timesteps
      
      * fix comment
      
      * apply review sugestions
      
      * Update src/diffusers/schedulers/scheduling_flow_match_euler_discrete.py
      Co-authored-by: default avatarYiYi Xu <yixu310@gmail.com>
      
      ---------
      Co-authored-by: default avatar三洋三洋 <1258009915@qq.com>
      Co-authored-by: default avatarOleehyO <leehy0357@gmail.com>
      Co-authored-by: default avatarAryan <aryan@huggingface.co>
      Co-authored-by: default avatarYiYi Xu <yixu310@gmail.com>
      d90cd362
  11. 12 Feb, 2025 2 commits
  12. 11 Feb, 2025 2 commits
  13. 23 Jan, 2025 1 commit
  14. 20 Jan, 2025 1 commit
  15. 19 Jan, 2025 1 commit
  16. 16 Jan, 2025 1 commit
  17. 13 Jan, 2025 2 commits
  18. 09 Jan, 2025 1 commit
  19. 08 Jan, 2025 1 commit
  20. 06 Jan, 2025 2 commits
  21. 31 Dec, 2024 2 commits
  22. 28 Dec, 2024 1 commit
  23. 23 Dec, 2024 3 commits
  24. 20 Dec, 2024 5 commits
  25. 18 Dec, 2024 1 commit
  26. 17 Dec, 2024 1 commit
  27. 16 Dec, 2024 1 commit
    • Aryan's avatar
      [core] Hunyuan Video (#10136) · aace1f41
      Aryan authored
      
      
      * copy transformer
      
      * copy vae
      
      * copy pipeline
      
      * make fix-copies
      
      * refactor; make original code work with diffusers; test latents for comparison generated with this commit
      
      * move rope into pipeline; remove flash attention; refactor
      
      * begin conversion script
      
      * make style
      
      * refactor attention
      
      * refactor
      
      * refactor final layer
      
      * their mlp -> our feedforward
      
      * make style
      
      * add docs
      
      * refactor layer names
      
      * refactor modulation
      
      * cleanup
      
      * refactor norms
      
      * refactor activations
      
      * refactor single blocks attention
      
      * refactor attention processor
      
      * make style
      
      * cleanup a bit
      
      * refactor double transformer block attention
      
      * update mochi attn proc
      
      * use diffusers attention implementation in all modules; checkpoint for all values matching original
      
      * remove helper functions in vae
      
      * refactor upsample
      
      * refactor causal conv
      
      * refactor resnet
      
      * refactor
      
      * refactor
      
      * refactor
      
      * grad checkpointing
      
      * autoencoder test
      
      * fix scaling factor
      
      * refactor clip
      
      * refactor llama text encoding
      
      * add coauthor
      Co-Authored-By: default avatar"Gregory D. Hunkins" <greg@ollano.com>
      
      * refactor rope; diff: 0.14990234375; reason and fix: create rope grid on cpu and move to device
      
      Note: The following line diverges from original behaviour. We create the grid on the device, whereas
      original implementation creates it on CPU and then moves it to device. This results in numerical
      differences in layerwise debugging outputs, but visually it is the same.
      
      * use diffusers timesteps embedding; diff: 0.10205078125
      
      * rename
      
      * convert
      
      * update
      
      * add tests for transformer
      
      * add pipeline tests; text encoder 2 is not optional
      
      * fix attention implementation for torch
      
      * add example
      
      * update docs
      
      * update docs
      
      * apply suggestions from review
      
      * refactor vae
      
      * update
      
      * Apply suggestions from code review
      Co-authored-by: default avatarhlky <hlky@hlky.ac>
      
      * Update src/diffusers/pipelines/hunyuan_video/pipeline_hunyuan_video.py
      Co-authored-by: default avatarhlky <hlky@hlky.ac>
      
      * Update src/diffusers/pipelines/hunyuan_video/pipeline_hunyuan_video.py
      Co-authored-by: default avatarhlky <hlky@hlky.ac>
      
      * make fix-copies
      
      * update
      
      ---------
      Co-authored-by: default avatar"Gregory D. Hunkins" <greg@ollano.com>
      Co-authored-by: default avatarhlky <hlky@hlky.ac>
      aace1f41