1. 06 Jul, 2023 2 commits
    • Patrick von Platen's avatar
      [SD-XL] Add new pipelines (#3859) · bc9a8cef
      Patrick von Platen authored
      
      
      * Add new text encoder
      
      * add transformers depth
      
      * More
      
      * Correct conversion script
      
      * Fix more
      
      * Fix more
      
      * Correct more
      
      * correct text encoder
      
      * Finish all
      
      * proof that in works in run local xl
      
      * clean up
      
      * Get refiner to work
      
      * Add red castle
      
      * Fix batch size
      
      * Improve pipelines more
      
      * Finish text2image tests
      
      * Add img2img test
      
      * Fix more
      
      * fix import
      
      * Fix embeddings for classic models (#3888)
      
      Fix embeddings for classic SD models.
      
      * Allow multiple prompts to be passed to the refiner (#3895)
      
      * finish more
      
      * Apply suggestions from code review
      
      * add watermarker
      
      * Model offload (#3889)
      
      * Model offload.
      
      * Model offload for refiner / img2img
      
      * Hardcode encoder offload on img2img vae encode
      
      Saves some GPU RAM in img2img / refiner tasks so it remains below 8 GB.
      
      ---------
      Co-authored-by: default avatarPatrick von Platen <patrick.v.platen@gmail.com>
      
      * correct
      
      * fix
      
      * clean print
      
      * Update install warning for `invisible-watermark`
      
      * add: missing docstrings.
      
      * fix and simplify the usage example in img2img.
      
      * fix setup for watermarking.
      
      * Revert "fix setup for watermarking."
      
      This reverts commit 491bc9f5a640bbf46a97a8e52d6eff7e70eb8e4b.
      
      * fix: watermarking setup.
      
      * fix: op.
      
      * run make fix-copies.
      
      * make sure tests pass
      
      * improve convert
      
      * make tests pass
      
      * make tests pass
      
      * better error message
      
      * fiinsh
      
      * finish
      
      * Fix final test
      
      ---------
      Co-authored-by: default avatarPedro Cuenca <pedro@huggingface.co>
      Co-authored-by: default avatarSayak Paul <spsayakpaul@gmail.com>
      bc9a8cef
    • Prathik Rao's avatar
      Make `UNet2DConditionOutput` pickle-able (#3857) · de142611
      Prathik Rao authored
      
      
      * add default to unet output to prevent it from being a required arg
      
      * add unit test
      
      * make style
      
      * adjust unit test
      
      * mark as fast test
      
      * adjust assert statement in test
      
      ---------
      
      Co-authored-by: Prathik Rao <prathikrao@microsoft.com@orttrainingdev8.d32nl1ml4oruzj4qz3bqlggovf.px.internal.cloudapp.net>
      Co-authored-by: default avatarroot <root@orttrainingdev8.d32nl1ml4oruzj4qz3bqlggovf.px.internal.cloudapp.net>
      de142611
  2. 30 Jun, 2023 1 commit
    • Steven Liu's avatar
      [docs] Model API (#3562) · 174dcd69
      Steven Liu authored
      * add modelmixin and unets
      
      * remove old model page
      
      * minor fixes
      
      * fix unet2dcondition
      
      * add vqmodel and autoencoderkl
      
      * add rest of models
      
      * fix autoencoderkl path
      
      * fix toctree
      
      * fix toctree again
      
      * apply feedback
      
      * apply feedback
      
      * fix copies
      
      * fix controlnet copy
      
      * fix copies
      174dcd69
  3. 22 Jun, 2023 1 commit
    • Patrick von Platen's avatar
      Correct bad attn naming (#3797) · 88d26946
      Patrick von Platen authored
      
      
      * relax tolerance slightly
      
      * correct incorrect naming
      
      * correct namingc
      
      * correct more
      
      * Apply suggestions from code review
      
      * Fix more
      
      * Correct more
      
      * correct incorrect naming
      
      * Update src/diffusers/models/controlnet.py
      
      * Correct flax
      
      * Correct renaming
      
      * Correct blocks
      
      * Fix more
      
      * Correct more
      
      * mkae style
      
      * mkae style
      
      * mkae style
      
      * mkae style
      
      * mkae style
      
      * Fix flax
      
      * mkae style
      
      * rename
      
      * rename
      
      * rename attn head dim to attention_head_dim
      
      * correct flax
      
      * make style
      
      * improve
      
      * Correct more
      
      * make style
      
      * fix more
      
      * mkae style
      
      * Update src/diffusers/models/controlnet_flax.py
      
      * Apply suggestions from code review
      Co-authored-by: default avatarPedro Cuenca <pedro@huggingface.co>
      
      ---------
      Co-authored-by: default avatarPedro Cuenca <pedro@huggingface.co>
      88d26946
  4. 05 Jun, 2023 1 commit
  5. 30 May, 2023 1 commit
  6. 25 May, 2023 1 commit
  7. 22 May, 2023 1 commit
    • Birch-san's avatar
      Support for cross-attention bias / mask (#2634) · 64bf5d33
      Birch-san authored
      
      
      * Cross-attention masks
      
      prefer qualified symbol, fix accidental Optional
      
      prefer qualified symbol in AttentionProcessor
      
      prefer qualified symbol in embeddings.py
      
      qualified symbol in transformed_2d
      
      qualify FloatTensor in unet_2d_blocks
      
      move new transformer_2d params attention_mask, encoder_attention_mask to the end of the section which is assumed (e.g. by functions such as checkpoint()) to have a stable positional param interface. regard return_dict as a special-case which is assumed to be injected separately from positional params (e.g. by create_custom_forward()).
      
      move new encoder_attention_mask param to end of CrossAttn block interfaces and Unet2DCondition interface, to maintain positional param interface.
      
      regenerate modeling_text_unet.py
      
      remove unused import
      
      unet_2d_condition encoder_attention_mask docs
      Co-authored-by: default avatarPedro Cuenca <pedro@huggingface.co>
      
      versatile_diffusion/modeling_text_unet.py encoder_attention_mask docs
      Co-authored-by: default avatarPedro Cuenca <pedro@huggingface.co>
      
      transformer_2d encoder_attention_mask docs
      Co-authored-by: default avatarPedro Cuenca <pedro@huggingface.co>
      
      unet_2d_blocks.py: add parameter name comments
      Co-authored-by: default avatarPedro Cuenca <pedro@huggingface.co>
      
      revert description. bool-to-bias treatment happens in unet_2d_condition only.
      
      comment parameter names
      
      fix copies, style
      
      * encoder_attention_mask for SimpleCrossAttnDownBlock2D, SimpleCrossAttnUpBlock2D
      
      * encoder_attention_mask for UNetMidBlock2DSimpleCrossAttn
      
      * support attention_mask, encoder_attention_mask in KCrossAttnDownBlock2D, KCrossAttnUpBlock2D, KAttentionBlock. fix binding of attention_mask, cross_attention_kwargs params in KCrossAttnDownBlock2D, KCrossAttnUpBlock2D checkpoint invocations.
      
      * fix mistake made during merge conflict resolution
      
      * regenerate versatile_diffusion
      
      * pass time embedding into checkpointed attention invocation
      
      * always assume encoder_attention_mask is a mask (i.e. not a bias).
      
      * style, fix-copies
      
      * add tests for cross-attention masks
      
      * add test for padding of attention mask
      
      * explain mask's query_tokens dim. fix explanation about broadcasting over channels; we actually broadcast over query tokens
      
      * support both masks and biases in Transformer2DModel#forward. document behaviour
      
      * fix-copies
      
      * delete attention_mask docs on the basis I never tested self-attention masking myself. not comfortable explaining it, since I don't actually understand how a self-attn mask can work in its current form: the key length will be different in every ResBlock (we don't downsample the mask when we downsample the image).
      
      * review feedback: the standard Unet blocks shouldn't pass temb to attn (only to resnet). remove from KCrossAttnDownBlock2D,KCrossAttnUpBlock2D#forward.
      
      * remove encoder_attention_mask param from SimpleCrossAttn{Up,Down}Block2D,UNetMidBlock2DSimpleCrossAttn, and mask-choice in those blocks' #forward, on the basis that they only do one type of attention, so the consumer can pass whichever type of attention_mask is appropriate.
      
      * put attention mask padding back to how it was (since the SD use-case it enabled wasn't important, and it breaks the original unclip use-case). disable the test which was added.
      
      * fix-copies
      
      * style
      
      * fix-copies
      
      * put encoder_attention_mask param back into Simple block forward interfaces, to ensure consistency of forward interface.
      
      * restore passing of emb to KAttentionBlock#forward, on the basis that removal caused test failures. restore also the passing of emb to checkpointed calls to KAttentionBlock#forward.
      
      * make simple unet2d blocks use encoder_attention_mask, but only when attention_mask is None. this should fix UnCLIP compatibility.
      
      * fix copies
      64bf5d33
  8. 02 May, 2023 1 commit
  9. 01 May, 2023 1 commit
    • Patrick von Platen's avatar
      Torch compile graph fix (#3286) · 0e82fb19
      Patrick von Platen authored
      * fix more
      
      * Fix more
      
      * fix more
      
      * Apply suggestions from code review
      
      * fix
      
      * make style
      
      * make fix-copies
      
      * fix
      
      * make sure torch compile
      
      * Clean
      
      * fix test
      0e82fb19
  10. 25 Apr, 2023 1 commit
    • Patrick von Platen's avatar
      add model (#3230) · e51f19ae
      Patrick von Platen authored
      
      
      * add
      
      * clean
      
      * up
      
      * clean up more
      
      * fix more tests
      
      * Improve docs further
      
      * improve
      
      * more fixes docs
      
      * Improve docs more
      
      * Update src/diffusers/models/unet_2d_condition.py
      
      * fix
      
      * up
      
      * update doc links
      
      * make fix-copies
      
      * add safety checker and watermarker to stage 3 doc page code snippets
      
      * speed optimizations docs
      
      * memory optimization docs
      
      * make style
      
      * add watermarking snippets to doc string examples
      
      * make style
      
      * use pt_to_pil helper functions in doc strings
      
      * skip mps tests
      
      * Improve safety
      
      * make style
      
      * new logic
      
      * fix
      
      * fix bad onnx design
      
      * make new stable diffusion upscale pipeline model arguments optional
      
      * define has_nsfw_concept when non-pil output type
      
      * lowercase linked to notebook name
      
      ---------
      Co-authored-by: default avatarWilliam Berman <WLBberman@gmail.com>
      e51f19ae
  11. 18 Apr, 2023 2 commits
  12. 17 Apr, 2023 1 commit
  13. 11 Apr, 2023 4 commits
    • Will Berman's avatar
      Attention processor cross attention norm group norm (#3021) · 98c5e5da
      Will Berman authored
      add group norm type to attention processor cross attention norm
      
      This lets the cross attention norm use both a group norm block and a
      layer norm block.
      
      The group norm operates along the channels dimension
      and requires input shape (batch size, channels, *) where as the layer norm with a single
      `normalized_shape` dimension only operates over the least significant
      dimension i.e. (*, channels).
      
      The channels we want to normalize are the hidden dimension of the encoder hidden states.
      
      By convention, the encoder hidden states are always passed as (batch size, sequence
      length, hidden states).
      
      This means the layer norm can operate on the tensor without modification, but the group
      norm requires flipping the last two dimensions to operate on (batch size, hidden states, sequence length).
      
      All existing attention processors will have the same logic and we can
      consolidate it in a helper function `prepare_encoder_hidden_states`
      
      prepare_encoder_hidden_states -> norm_encoder_hidden_states re: @patrickvonplaten
      
      move norm_cross defined check to outside norm_encoder_hidden_states
      
      add missing attn.norm_cross check
      98c5e5da
    • Will Berman's avatar
      unet time embedding activation function (#3048) · 2d52e81c
      Will Berman authored
      * unet time embedding activation function
      
      * typo act_fn -> time_embedding_act_fn
      
      * flatten conditional
      2d52e81c
    • Will Berman's avatar
      add only cross attention to simple attention blocks (#3011) · c6180a31
      Will Berman authored
      * add only cross attention to simple attention blocks
      
      * add test for only_cross_attention re: @patrickvonplaten
      
      * mid_block_only_cross_attention better default
      
      allow mid_block_only_cross_attention to default to
      `only_cross_attention` when `only_cross_attention` is given
      as a single boolean
      c6180a31
    • Patrick von Platen's avatar
      Fix config prints and save, load of pipelines (#2849) · 8b451eb6
      Patrick von Platen authored
      * [Config] Fix config prints and save, load
      
      * Only use potential nn.Modules for dtype and device
      
      * Correct vae image processor
      
      * make sure in_channels is not accessed directly
      
      * make sure in channels is only accessed via config
      
      * Make sure schedulers only access config attributes
      
      * Make sure to access config in SAG
      
      * Fix vae processor and make style
      
      * add tests
      
      * uP
      
      * make style
      
      * Fix more naming issues
      
      * Final fix with vae config
      
      * change more
      8b451eb6
  14. 10 Apr, 2023 3 commits
  15. 27 Mar, 2023 1 commit
  16. 23 Mar, 2023 1 commit
    • Sanchit Gandhi's avatar
      Add AudioLDM (#2232) · b94880e5
      Sanchit Gandhi authored
      
      
      * Add AudioLDM
      
      * up
      
      * add vocoder
      
      * start unet
      
      * unconditional unet
      
      * clap, vocoder and vae
      
      * clean-up: conversion scripts
      
      * fix: conversion script token_type_ids
      
      * clean-up: pipeline docstring
      
      * tests: from SD
      
      * clean-up: cpu offload vocoder instead of safety checker
      
      * feat: adapt tests to audioldm
      
      * feat: add docs
      
      * clean-up: amend pipeline docstrings
      
      * clean-up: make style
      
      * clean-up: make fix-copies
      
      * fix: add doc path to toctree
      
      * clean-up: args for conversion script
      
      * clean-up: paths to checkpoints
      
      * fix: use conditional unet
      
      * clean-up: make style
      
      * fix: type hints for UNet
      
      * clean-up: docstring for UNet
      
      * clean-up: make style
      
      * clean-up: remove duplicate in docstring
      
      * clean-up: make style
      
      * clean-up: make fix-copies
      
      * clean-up: move imports to start in code snippet
      
      * fix: pass cross_attention_dim as a list/tuple to unet
      
      * clean-up: make fix-copies
      
      * fix: update checkpoint path
      
      * fix: unet cross_attention_dim in tests
      
      * film embeddings -> class embeddings
      
      * Apply suggestions from code review
      Co-authored-by: default avatarWill Berman <wlbberman@gmail.com>
      
      * fix: unet film embed to use existing args
      
      * fix: unet tests to use existing args
      
      * fix: make style
      
      * fix: transformers import and version in init
      
      * clean-up: make style
      
      * Revert "clean-up: make style"
      
      This reverts commit 5d6d1f8b324f5583e7805dc01e2c86e493660d66.
      
      * clean-up: make style
      
      * clean-up: use pipeline tester mixin tests where poss
      
      * clean-up: skip attn slicing test
      
      * fix: add torch dtype to docs
      
      * fix: remove conversion script out of src
      
      * fix: remove .detach from 1d waveform
      
      * fix: reduce default num inf steps
      
      * fix: swap height/width -> audio_length_in_s
      
      * clean-up: make style
      
      * fix: remove nightly tests
      
      * fix: imports in conversion script
      
      * clean-up: slim-down to two slow tests
      
      * clean-up: slim-down fast tests
      
      * fix: batch consistent tests
      
      * clean-up: make style
      
      * clean-up: remove vae slicing fast test
      
      * clean-up: propagate changes to doc
      
      * fix: increase test tol to 1e-2
      
      * clean-up: finish docs
      
      * clean-up: make style
      
      * feat: vocoder / VAE compatibility check
      
      * feat: possibly expand / cut audio waveform
      
      * fix: pipeline call signature test
      
      * fix: slow tests output len
      
      * clean-up: make style
      
      * make style
      
      ---------
      Co-authored-by: default avatarPatrick von Platen <patrick.v.platen@gmail.com>
      Co-authored-by: default avatarWilliam Berman <WLBberman@gmail.com>
      b94880e5
  17. 21 Mar, 2023 1 commit
  18. 15 Mar, 2023 1 commit
  19. 14 Mar, 2023 1 commit
  20. 07 Mar, 2023 1 commit
  21. 02 Mar, 2023 1 commit
    • Takuma Mori's avatar
      Add a ControlNet model & pipeline (#2407) · 8dfff7c0
      Takuma Mori authored
      
      
      * add scaffold
      - copied convert_controlnet_to_diffusers.py from
      convert_original_stable_diffusion_to_diffusers.py
      
      * Add support to load ControlNet (WIP)
      - this makes Missking Key error on ControlNetModel
      
      * Update to convert ControlNet without error msg
      - init impl for StableDiffusionControlNetPipeline
      - init impl for ControlNetModel
      
      * cleanup of commented out
      
      * split create_controlnet_diffusers_config()
      from create_unet_diffusers_config()
      
      - add config: hint_channels
      
      * Add input_hint_block, input_zero_conv and
      middle_block_out
      - this makes missing key error on loading model
      
      * add unet_2d_blocks_controlnet.py
      - copied from unet_2d_blocks.py as impl CrossAttnDownBlock2D,DownBlock2D
      - this makes missing key error on loading model
      
      * Add loading for input_hint_block, zero_convs
      and middle_block_out
      
      - this makes no error message on model loading
      
      * Copy from UNet2DConditionalModel except __init__
      
      * Add ultra primitive test for ControlNetModel
      inference
      
      * Support ControlNetModel inference
      - without exceptions
      
      * copy forward() from UNet2DConditionModel
      
      * Impl ControlledUNet2DConditionModel inference
      - test_controlled_unet_inference passed
      
      * Frozen weight & biases for training
      
      * Minimized version of ControlNet/ControlledUnet
      - test_modules_controllnet.py passed
      
      * make style
      
      * Add support model loading for minimized ver
      
      * Remove all previous version files
      
      * from_pretrained and inference test passed
      
      * copied from pipeline_stable_diffusion.py
      except `__init__()`
      
      * Impl pipeline, pixel match test (almost) passed.
      
      * make style
      
      * make fix-copies
      
      * Fix to add import ControlNet blocks
      for `make fix-copies`
      
      * Remove einops dependency
      
      * Support  np.ndarray, PIL.Image for controlnet_hint
      
      * set default config file as lllyasviel's
      
      * Add support grayscale (hw) numpy array
      
      * Add and update docstrings
      
      * add control_net.mdx
      
      * add control_net.mdx to toctree
      
      * Update copyright year
      
      * Fix to add PIL.Image RGB->BGR conversion
      - thanks @Mystfit
      
      * make fix-copies
      
      * add basic fast test for controlnet
      
      * add slow test for controlnet/unet
      
      * Ignore down/up_block len check on ControlNet
      
      * add a copy from test_stable_diffusion.py
      
      * Accept controlnet_hint is None
      
      * merge pipeline_stable_diffusion.py diff
      
      * Update class name to SDControlNetPipeline
      
      * make style
      
      * Baseline fast test almost passed (w long desc)
      
      * still needs investigate.
      
      Following didn't passed descriped in TODO comment:
      - test_stable_diffusion_long_prompt
      - test_stable_diffusion_no_safety_checker
      
      Following didn't passed same as stable_diffusion_pipeline:
      - test_attention_slicing_forward_pass
      - test_inference_batch_single_identical
      - test_xformers_attention_forwardGenerator_pass
      these seems come from calc accuracy.
      
      * Add note comment related vae_scale_factor
      
      * add test_stable_diffusion_controlnet_ddim
      
      * add assertion for vae_scale_factor != 8
      
      * slow test of pipeline almost passed
      Failed: test_stable_diffusion_pipeline_with_model_offloading
      - ImportError: `enable_model_offload` requires `accelerate v0.17.0` or higher
      
      but currently latest version == 0.16.0
      
      * test_stable_diffusion_long_prompt passed
      
      * test_stable_diffusion_no_safety_checker passed
      
      - due to its model size, move to slow test
      
      * remove PoC test files
      
      * fix num_of_image, prompt length issue add add test
      
      * add support List[PIL.Image] for controlnet_hint
      
      * wip
      
      * all slow test passed
      
      * make style
      
      * update for slow test
      
      * RGB(PIL)->BGR(ctrlnet) conversion
      
      * fixes
      
      * remove manual num_images_per_prompt test
      
      * add document
      
      * add `image` argument docstring
      
      * make style
      
      * Add line to correct conversion
      
      * add controlnet_conditioning_scale (aka control_scales
      strength)
      
      * rgb channel ordering by default
      
      * image batching logic
      
      * Add control image descriptions for each checkpoint
      
      * Only save controlnet model in conversion script
      
      * Update src/diffusers/pipelines/stable_diffusion/pipeline_stable_diffusion_controlnet.py
      
      typo
      Co-authored-by: default avatarPedro Cuenca <pedro@huggingface.co>
      
      * Update docs/source/en/api/pipelines/stable_diffusion/control_net.mdx
      Co-authored-by: default avatarPedro Cuenca <pedro@huggingface.co>
      
      * Update docs/source/en/api/pipelines/stable_diffusion/control_net.mdx
      Co-authored-by: default avatarPedro Cuenca <pedro@huggingface.co>
      
      * Update docs/source/en/api/pipelines/stable_diffusion/control_net.mdx
      Co-authored-by: default avatarPedro Cuenca <pedro@huggingface.co>
      
      * Update docs/source/en/api/pipelines/stable_diffusion/control_net.mdx
      Co-authored-by: default avatarPedro Cuenca <pedro@huggingface.co>
      
      * Update docs/source/en/api/pipelines/stable_diffusion/control_net.mdx
      Co-authored-by: default avatarPedro Cuenca <pedro@huggingface.co>
      
      * Update docs/source/en/api/pipelines/stable_diffusion/control_net.mdx
      Co-authored-by: default avatarPedro Cuenca <pedro@huggingface.co>
      
      * Update docs/source/en/api/pipelines/stable_diffusion/control_net.mdx
      Co-authored-by: default avatarPedro Cuenca <pedro@huggingface.co>
      
      * Update docs/source/en/api/pipelines/stable_diffusion/control_net.mdx
      Co-authored-by: default avatarPedro Cuenca <pedro@huggingface.co>
      
      * Update docs/source/en/api/pipelines/stable_diffusion/control_net.mdx
      Co-authored-by: default avatarPedro Cuenca <pedro@huggingface.co>
      
      * add gerated image example
      
      * a depth mask -> a depth map
      
      * rename control_net.mdx to controlnet.mdx
      
      * fix toc title
      
      * add ControlNet abstruct and link
      
      * Update src/diffusers/pipelines/stable_diffusion/pipeline_stable_diffusion_controlnet.py
      Co-authored-by: default avatardqueue <dbyqin@gmail.com>
      
      * remove controlnet constructor arguments re: @patrickvonplaten
      
      * [integration tests] test canny
      
      * test_canny fixes
      
      * [integration tests] test_depth
      
      * [integration tests] test_hed
      
      * [integration tests] test_mlsd
      
      * add channel order config to controlnet
      
      * [integration tests] test normal
      
      * [integration tests] test_openpose test_scribble
      
      * change height and width to default to conditioning image
      
      * [integration tests] test seg
      
      * style
      
      * test_depth fix
      
      * [integration tests] size fixes
      
      * [integration tests] cpu offloading
      
      * style
      
      * generalize controlnet embedding
      
      * fix conversion script
      
      * Update docs/source/en/api/pipelines/stable_diffusion/controlnet.mdx
      Co-authored-by: default avatarSayak Paul <spsayakpaul@gmail.com>
      
      * Update docs/source/en/api/pipelines/stable_diffusion/controlnet.mdx
      Co-authored-by: default avatarSayak Paul <spsayakpaul@gmail.com>
      
      * Update docs/source/en/api/pipelines/stable_diffusion/controlnet.mdx
      Co-authored-by: default avatarSayak Paul <spsayakpaul@gmail.com>
      
      * Update docs/source/en/api/pipelines/stable_diffusion/controlnet.mdx
      Co-authored-by: default avatarSayak Paul <spsayakpaul@gmail.com>
      
      * Style adapted to the documentation of pix2pix
      
      * merge main by hand
      
      * style
      
      * [docs] controlling generation doc nits
      
      * correct some things
      
      * add: controlnetmodel to autodoc.
      
      * finish docs
      
      * finish
      
      * finish 2
      
      * correct images
      
      * finish controlnet
      
      * Apply suggestions from code review
      Co-authored-by: default avatarPedro Cuenca <pedro@huggingface.co>
      
      * uP
      
      * upload model
      
      * up
      
      * up
      
      ---------
      Co-authored-by: default avatarWilliam Berman <WLBberman@gmail.com>
      Co-authored-by: default avatarPedro Cuenca <pedro@huggingface.co>
      Co-authored-by: default avatardqueue <dbyqin@gmail.com>
      Co-authored-by: default avatarSayak Paul <spsayakpaul@gmail.com>
      Co-authored-by: default avatarPatrick von Platen <patrick.v.platen@gmail.com>
      8dfff7c0
  22. 01 Mar, 2023 1 commit
  23. 14 Feb, 2023 2 commits
  24. 07 Feb, 2023 1 commit
    • YiYi Xu's avatar
      Stable Diffusion Latent Upscaler (#2059) · 1051ca81
      YiYi Xu authored
      
      
      * Modify UNet2DConditionModel
      
      - allow skipping mid_block
      
      - adding a norm_group_size argument so that we can set the `num_groups` for group norm using `num_channels//norm_group_size`
      
      - allow user to set dimension for the timestep embedding (`time_embed_dim`)
      
      - the kernel_size for `conv_in` and `conv_out` is now configurable
      
      - add random fourier feature layer (`GaussianFourierProjection`) for `time_proj`
      
      - allow user to add the time and class embeddings before passing through the projection layer together - `time_embedding(t_emb + class_label))`
      
      - added 2 arguments `attn1_types` and `attn2_types`
      
        * currently we have argument `only_cross_attention`: when it's set to `True`, we will have a to the
      `BasicTransformerBlock` block with 2 cross-attention , otherwise we
      get a self-attention followed by a cross-attention; in k-upscaler, we need to have blocks that include just one cross-attention, or self-attention -> cross-attention;
      so I added `attn1_types` and `attn2_types` to the unet's argument list to allow user specify the attention types for the 2 positions in each block;  note that I stil kept
      the `only_cross_attention` argument for unet for easy configuration, but it will be converted to `attn1_type` and `attn2_type` when passing down to the down blocks
      
      - the position of downsample layer and upsample layer is now configurable
      
      - in k-upscaler unet, there is only one skip connection per each up/down block (instead of each layer in stable diffusion unet), added `skip_freq = "block"` to support
      this use case
      
      - if user passes attention_mask to unet, it will prepare the mask and pass a flag to cross attention processer to skip the `prepare_attention_mask` step
      inside cross attention block
      
      add up/down blocks for k-upscaler
      
      modify CrossAttention class
      
      - make the `dropout` layer in `to_out` optional
      
      - `use_conv_proj` - use conv instead of linear for all projection layers (i.e. `to_q`, `to_k`, `to_v`, `to_out`) whenever possible. note that when it's used to do cross
      attention, to_k, to_v has to be linear because the `encoder_hidden_states` is not 2d
      
      - `cross_attention_norm` - add an optional layernorm on encoder_hidden_states
      
      - `attention_dropout`: add an optional dropout on attention score
      
      adapt BasicTransformerBlock
      
      - add an ada groupnorm layer  to conditioning attention input with timestep embedding
      
      - allow skipping the FeedForward layer in between the attentions
      
      - replaced the only_cross_attention argument with attn1_type and attn2_type for more flexible configuration
      
      update timestep embedding: add new act_fn  gelu and an optional act_2
      
      modified ResnetBlock2D
      
      - refactored with AdaGroupNorm class (the timestep scale shift normalization)
      
      - add `mid_channel` argument - allow the first conv to have a different output dimension from the second conv
      
      - add option to use input AdaGroupNorm on the input instead of groupnorm
      
      - add options to add a dropout layer after each conv
      
      - allow user to set the bias in conv_shortcut (needed for k-upscaler)
      
      - add gelu
      
      adding conversion script for k-upscaler unet
      
      add pipeline
      
      * fix attention mask
      
      * fix a typo
      
      * fix a bug
      
      * make sure model can be used with GPU
      
      * make pipeline work with fp16
      
      * fix an error in BasicTransfomerBlock
      
      * make style
      
      * fix typo
      
      * some more fixes
      
      * uP
      
      * up
      
      * correct more
      
      * some clean-up
      
      * clean time proj
      
      * up
      
      * uP
      
      * more changes
      
      * remove the upcast_attention=True from unet config
      
      * remove attn1_types, attn2_types etc
      
      * fix
      
      * revert incorrect changes up/down samplers
      
      * make style
      
      * remove outdated files
      
      * Apply suggestions from code review
      
      * attention refactor
      
      * refactor cross attention
      
      * Apply suggestions from code review
      
      * update
      
      * up
      
      * update
      
      * Apply suggestions from code review
      
      * finish
      
      * Update src/diffusers/models/cross_attention.py
      
      * more fixes
      
      * up
      
      * up
      
      * up
      
      * finish
      
      * more corrections of conversion state
      
      * act_2 -> act_2_fn
      
      * remove dropout_after_conv from ResnetBlock2D
      
      * make style
      
      * simplify KAttentionBlock
      
      * add fast test for latent upscaler pipeline
      
      * add slow test
      
      * slow test fp16
      
      * make style
      
      * add doc string for pipeline_stable_diffusion_latent_upscale
      
      * add api doc page for latent upscaler pipeline
      
      * deprecate attention mask
      
      * clean up embeddings
      
      * simplify resnet
      
      * up
      
      * clean up resnet
      
      * up
      
      * correct more
      
      * up
      
      * up
      
      * improve a bit more
      
      * correct more
      
      * more clean-ups
      
      * Update docs/source/en/api/pipelines/stable_diffusion/latent_upscale.mdx
      Co-authored-by: default avatarPatrick von Platen <patrick.v.platen@gmail.com>
      
      * Update docs/source/en/api/pipelines/stable_diffusion/latent_upscale.mdx
      Co-authored-by: default avatarPatrick von Platen <patrick.v.platen@gmail.com>
      
      * add docstrings for new unet config
      
      * Update src/diffusers/pipelines/stable_diffusion/pipeline_stable_diffusion_latent_upscale.py
      Co-authored-by: default avatarPatrick von Platen <patrick.v.platen@gmail.com>
      
      * Update src/diffusers/pipelines/stable_diffusion/pipeline_stable_diffusion_latent_upscale.py
      Co-authored-by: default avatarPatrick von Platen <patrick.v.platen@gmail.com>
      
      * # Copied from
      
      * encode the image if not latent
      
      * remove force casting vae to fp32
      
      * fix
      
      * add comments about preconditioning parameters from k-diffusion paper
      
      * attn1_type, attn2_type -> add_self_attention
      
      * clean up get_down_block and get_up_block
      
      * fix
      
      * fixed a typo(?) in ada group norm
      
      * update slice attention processer for cross attention
      
      * update slice
      
      * fix fast test
      
      * update the checkpoint
      
      * finish tests
      
      * fix-copies
      
      * fix-copy for modeling_text_unet.py
      
      * make style
      
      * make style
      
      * fix f-string
      
      * Update src/diffusers/pipelines/stable_diffusion/pipeline_stable_diffusion_latent_upscale.py
      Co-authored-by: default avatarPatrick von Platen <patrick.v.platen@gmail.com>
      
      * fix import
      
      * correct changes
      
      * fix resnet
      
      * make fix-copies
      
      * correct euler scheduler
      
      * add missing #copied from for preprocess
      
      * revert
      
      * fix
      
      * fix copies
      
      * Update docs/source/en/api/pipelines/stable_diffusion/latent_upscale.mdx
      Co-authored-by: default avatarPedro Cuenca <pedro@huggingface.co>
      
      * Update docs/source/en/api/pipelines/stable_diffusion/latent_upscale.mdx
      Co-authored-by: default avatarPedro Cuenca <pedro@huggingface.co>
      
      * Update docs/source/en/api/pipelines/stable_diffusion/latent_upscale.mdx
      Co-authored-by: default avatarPedro Cuenca <pedro@huggingface.co>
      
      * Update docs/source/en/api/pipelines/stable_diffusion/latent_upscale.mdx
      Co-authored-by: default avatarPedro Cuenca <pedro@huggingface.co>
      
      * Update src/diffusers/models/cross_attention.py
      Co-authored-by: default avatarPedro Cuenca <pedro@huggingface.co>
      
      * Update src/diffusers/pipelines/stable_diffusion/pipeline_stable_diffusion_latent_upscale.py
      Co-authored-by: default avatarPedro Cuenca <pedro@huggingface.co>
      
      * Update src/diffusers/pipelines/stable_diffusion/pipeline_stable_diffusion_latent_upscale.py
      Co-authored-by: default avatarPedro Cuenca <pedro@huggingface.co>
      
      * clean up conversion script
      
      * KDownsample2d,KUpsample2d -> KDownsample2D,KUpsample2D
      
      * more
      
      * Update src/diffusers/models/unet_2d_condition.py
      Co-authored-by: default avatarPedro Cuenca <pedro@huggingface.co>
      
      * remove prepare_extra_step_kwargs
      
      * Update src/diffusers/pipelines/stable_diffusion/pipeline_stable_diffusion_latent_upscale.py
      Co-authored-by: default avatarPedro Cuenca <pedro@huggingface.co>
      
      * Update src/diffusers/pipelines/stable_diffusion/pipeline_stable_diffusion_latent_upscale.py
      Co-authored-by: default avatarPatrick von Platen <patrick.v.platen@gmail.com>
      
      * fix a typo in timestep embedding
      
      * remove num_image_per_prompt
      
      * fix fasttest
      
      * make style + fix-copies
      
      * fix
      
      * fix xformer test
      
      * fix style
      
      * doc string
      
      * make style
      
      * fix-copies
      
      * docstring for time_embedding_norm
      
      * make style
      
      * final finishes
      
      * make fix-copies
      
      * fix tests
      
      ---------
      Co-authored-by: default avataryiyixuxu <yixu@yis-macbook-pro.lan>
      Co-authored-by: default avatarPatrick von Platen <patrick.v.platen@gmail.com>
      Co-authored-by: default avatarPedro Cuenca <pedro@huggingface.co>
      1051ca81
  25. 27 Jan, 2023 1 commit
  26. 26 Jan, 2023 1 commit
    • Pedro Cuenca's avatar
      Allow `UNet2DModel` to use arbitrary class embeddings (#2080) · 915a5636
      Pedro Cuenca authored
      * Allow `UNet2DModel` to use arbitrary class embeddings.
      
      We can currently use class conditioning in `UNet2DConditionModel`, but
      not in `UNet2DModel`. However, `UNet2DConditionModel` requires text
      conditioning too, which is unrelated to other types of conditioning.
      This commit makes it possible for `UNet2DModel` to be conditioned on
      entities other than timesteps. This is useful for training /
      research purposes. We can currently train models to perform
      unconditional image generation or text-to-image generation, but it's not
      straightforward to train a model to perform class-conditioned image
      generation, if text conditioning is not required.
      
      We could potentiall use `UNet2DConditionModel` for class-conditioning
      without text embeddings by using down/up blocks without
      cross-conditioning. However:
      - The mid block currently requires cross attention.
      - We are required to provide `encoder_hidden_states` to `forward`.
      
      * Style
      
      * Align class conditioning, add docstring for `num_class_embeds`.
      
      * Copy docstring to versatile_diffusion UNetFlatConditionModel
      915a5636
  27. 18 Jan, 2023 1 commit
  28. 30 Dec, 2022 1 commit
  29. 20 Dec, 2022 1 commit
  30. 18 Dec, 2022 1 commit
    • Will Berman's avatar
      kakaobrain unCLIP (#1428) · 2dcf64b7
      Will Berman authored
      
      
      * [wip] attention block updates
      
      * [wip] unCLIP unet decoder and super res
      
      * [wip] unCLIP prior transformer
      
      * [wip] scheduler changes
      
      * [wip] text proj utility class
      
      * [wip] UnCLIPPipeline
      
      * [wip] kakaobrain unCLIP convert script
      
      * [unCLIP pipeline] fixes re: @patrickvonplaten
      
      remove callbacks
      
      move denoising loops into call function
      
      * UNCLIPScheduler re: @patrickvonplaten
      
      Revert changes to DDPMScheduler. Make UNCLIPScheduler, a modified
      DDPM scheduler with changes to support karlo
      
      * mask -> attention_mask re: @patrickvonplaten
      
      * [DDPMScheduler] remove leftover change
      
      * [docs] PriorTransformer
      
      * [docs] UNet2DConditionModel and UNet2DModel
      
      * [nit] UNCLIPScheduler -> UnCLIPScheduler
      
      matches existing unclip naming better
      
      * [docs] SchedulingUnCLIP
      
      * [docs] UnCLIPTextProjModel
      
      * refactor
      
      * finish licenses
      
      * rename all to attention_mask and prep in models
      
      * more renaming
      
      * don't expose unused configs
      
      * final renaming fixes
      
      * remove x attn mask when not necessary
      
      * configure kakao script to use new class embedding config
      
      * fix copies
      
      * [tests] UnCLIPScheduler
      
      * finish x attn
      
      * finish
      
      * remove more
      
      * rename condition blocks
      
      * clean more
      
      * Apply suggestions from code review
      
      * up
      
      * fix
      
      * [tests] UnCLIPPipelineFastTests
      
      * remove unused imports
      
      * [tests] UnCLIPPipelineIntegrationTests
      
      * correct
      
      * make style
      Co-authored-by: default avatarPatrick von Platen <patrick.v.platen@gmail.com>
      2dcf64b7
  31. 07 Dec, 2022 2 commits