"vscode:/vscode.git/clone" did not exist on "d052f4c8a9fb7e135ca0f0b09f6feead93db9e01"
  1. 28 May, 2024 1 commit
  2. 27 May, 2024 5 commits
    • Sayak Paul's avatar
      install wget. (#8285) · fe5f035f
      Sayak Paul authored
      fe5f035f
    • Anton Obukhov's avatar
      [Pipeline] Marigold depth and normals estimation (#7847) · b3d10d6d
      Anton Obukhov authored
      
      
      * implement marigold depth and normals pipelines in diffusers core
      
      * remove bibtex
      
      * remove deprecations
      
      * remove save_memory argument
      
      * remove validate_vae
      
      * remove config output
      
      * remove batch_size autodetection
      
      * remove presets logic
      move default denoising_steps and processing_resolution into the model config
      make default ensemble_size 1
      
      * remove no_grad
      
      * add fp16 to the example usage
      
      * implement is_matplotlib_available
      use is_matplotlib_available, is_scipy_available for conditional imports in the marigold depth pipeline
      
      * move colormap, visualize_depth, and visualize_normals into export_utils.py
      
      * make the denoising loop more lucid
      fix the outputs to always be 4d tensors or lists of pil images
      support a 4d input_image case
      attempt to support model_cpu_offload_seq
      move check_inputs into a separate function
      change default batch_size to 1, remove any logic to make it bigger implicitly
      
      * style
      
      * rename denoising_steps into num_inference_steps
      
      * rename input_image into image
      
      * rename input_latent into latents
      
      * remove decode_image
      change decode_prediction to use the AutoencoderKL.decode method
      
      * move clean_latent outside of progress_bar
      
      * refactor marigold-reusable image processing bits into MarigoldImageProcessor class
      
      * clean up the usage example docstring
      
      * make ensemble functions members of the pipelines
      
      * add early checks in check_inputs
      rename E into ensemble_size in depth ensembling
      
      * fix vae_scale_factor computation
      
      * better compatibility with torch.compile
      better variable naming
      
      * move export_depth_to_png to export_utils
      
      * remove encode_prediction
      
      * improve visualize_depth and visualize_normals to accept multi-dimensional data and lists
      remove visualization functions from the pipelines
      move exporting depth as 16-bit PNGs functionality from the depth pipeline
      update example docstrings
      
      * do not shortcut vae.config variables
      
      * change all asserts to raise ValueError
      
      * rename output_prediction_type to output_type
      
      * better variable names
      clean up variable deletion code
      
      * better variable names
      
      * pass desc and leave kwargs into the diffusers progress_bar
      implement nested progress bar for images and steps loops
      
      * implement scale_invariant and shift_invariant flags in the ensemble_depth function
      add scale_invariant and shift_invariant flags readout from the model config
      further refactor ensemble_depth
      support ensembling without alignment
      add ensemble_depth docstring
      
      * fix generator device placement checks
      
      * move encode_empty_text body into the pipeline call
      
      * minor empty text encoding simplifications
      
      * adjust pipelines' class docstrings to explain the added construction arguments
      
      * improve the scipy failure condition
      add comments
      improve docstrings
      change the default use_full_z_range to True
      
      * make input image values range check configurable in the preprocessor
      refactor load_image_canonical in preprocessor to reject unknown types and return the image in the expected 4D format of tensor and on right device
      support a list of everything as inputs to the pipeline, change type to PipelineImageInput
      implement a check that all input list elements have the same dimensions
      improve docstrings of pipeline outputs
      remove check_input pipeline argument
      
      * remove forgotten print
      
      * add prediction_type model config
      
      * add uncertainty visualization into export utils
      fix NaN values in normals uncertainties
      
      * change default of output_uncertainty to False
      better handle the case of an attempt to export or visualize none
      
      * fix `output_uncertainty=False`
      
      * remove kwargs
      fix check_inputs according to the new inputs of the pipeline
      
      * rename prepare_latent into prepare_latents as in other pipelines
      annotate prepare_latents in normals pipeline with "Copied from"
      annotate encode_image in normals pipeline with "Copied from"
      
      * move nested-capable `progress_bar` method into the pipelines
      revert the original `progress_bar` method in pipeline_utils
      
      * minor message improvement
      
      * fix cpu offloading
      
      * move colormap, visualize_depth, export_depth_to_16bit_png, visualize_normals, visualize_uncertainty to marigold_image_processing.py
      update example docstrings
      
      * fix missing comma
      
      * change torch.FloatTensor to torch.Tensor
      
      * fix importing of MarigoldImageProcessor
      
      * fix vae offloading
      fix batched image encoding
      remove separate encode_image function and use vae.encode instead
      
      * implement marigold's intial tests
      relax generator checks in line with other pipelines
      implement return_dict __call__ argument in line with other pipelines
      
      * fix num_images computation
      
      * remove MarigoldImageProcessor and outputs from import structure
      update tests
      
      * update docstrings
      
      * update init
      
      * update
      
      * style
      
      * fix
      
      * fix
      
      * up
      
      * up
      
      * up
      
      * add simple test
      
      * up
      
      * update expected np input/output to be channel last
      
      * move expand_tensor_or_array into the MarigoldImageProcessor
      
      * rewrite tests to follow conventions - hardcoded slices instead of image artifacts
      write more smoke tests
      
      * add basic docs.
      
      * add anton's contribution statement
      
      * remove todos.
      
      * fix assertion values for marigold depth slow tests
      
      * fix assertion values for depth normals.
      
      * remove print
      
      * support AutoencoderTiny in the pipelines
      
      * update documentation page
      add Available Pipelines section
      add Available Checkpoints section
      add warning about num_inference_steps
      
      * fix missing import in docstring
      fix wrong value in visualize_depth docstring
      
      * [doc] add marigold to pipelines overview
      
      * [doc] add section "usage examples"
      
      * fix an issue with latents check in the pipelines
      
      * add "Frame-by-frame Video Processing with Consistency" section
      
      * grammarly
      
      * replace tables with images with css-styled images (blindly)
      
      * style
      
      * print
      
      * fix the assertions.
      
      * take from the github runner.
      
      * take the slices from action artifacts
      
      * style.
      
      * update with the slices from the runner.
      
      * remove unnecessary code blocks.
      
      * Revert "[doc] add marigold to pipelines overview"
      
      This reverts commit a505165150afd8dab23c474d1a054ea505a56a5f.
      
      * remove invitation for new modalities
      
      * split out marigold usage examples
      
      * doc cleanup
      
      ---------
      Co-authored-by: default avataryiyixuxu <yixu310@gmail.com>
      Co-authored-by: default avataryiyixuxu <yixu310@gmail,com>
      Co-authored-by: default avatarsayakpaul <spsayakpaul@gmail.com>
      b3d10d6d
    • Dhruv Nair's avatar
      Add zip package to doc builder image (#8284) · b82f9f56
      Dhruv Nair authored
      update
      b82f9f56
    • Sayak Paul's avatar
      [Workflows] add a more secure way to run tests from a PR. (#7969) · 6a5ba1b7
      Sayak Paul authored
      
      
      * add a more secure way to run tests from a PR.
      
      * make pytest more secure.
      
      * address dhruv's comments.
      
      * improve validation check.
      
      * Update .github/workflows/run_tests_from_a_pr.yml
      Co-authored-by: default avatarDhruv Nair <dhruv.nair@gmail.com>
      
      ---------
      Co-authored-by: default avatarDhruv Nair <dhruv.nair@gmail.com>
      6a5ba1b7
    • Dhaivat Bhatt's avatar
      Add details about 1-stage implementation in I2VGen-XL docs (#8282) · 4d40c914
      Dhaivat Bhatt authored
      * Add details about 1-stage implementation
      
      * Add details about 1-stage implementation
      4d40c914
  3. 24 May, 2024 9 commits
  4. 23 May, 2024 1 commit
  5. 22 May, 2024 2 commits
  6. 21 May, 2024 2 commits
  7. 20 May, 2024 6 commits
  8. 19 May, 2024 1 commit
  9. 17 May, 2024 1 commit
  10. 16 May, 2024 4 commits
  11. 15 May, 2024 4 commits
  12. 14 May, 2024 4 commits