"vscode:/vscode.git/clone" did not exist on "d052f4c8a9fb7e135ca0f0b09f6feead93db9e01"
- 28 May, 2024 1 commit
-
-
Álvaro Somoza authored
* initial doc * fix wrong LCM sentence * implement binary colormap without requiring matplotlib update section about Marigold for ControlNet update formatting of marigold_usage.md * fix indentation --------- Co-authored-by:anton <anton.obukhov@gmail.com>
-
- 27 May, 2024 5 commits
-
-
Sayak Paul authored
-
Anton Obukhov authored
* implement marigold depth and normals pipelines in diffusers core * remove bibtex * remove deprecations * remove save_memory argument * remove validate_vae * remove config output * remove batch_size autodetection * remove presets logic move default denoising_steps and processing_resolution into the model config make default ensemble_size 1 * remove no_grad * add fp16 to the example usage * implement is_matplotlib_available use is_matplotlib_available, is_scipy_available for conditional imports in the marigold depth pipeline * move colormap, visualize_depth, and visualize_normals into export_utils.py * make the denoising loop more lucid fix the outputs to always be 4d tensors or lists of pil images support a 4d input_image case attempt to support model_cpu_offload_seq move check_inputs into a separate function change default batch_size to 1, remove any logic to make it bigger implicitly * style * rename denoising_steps into num_inference_steps * rename input_image into image * rename input_latent into latents * remove decode_image change decode_prediction to use the AutoencoderKL.decode method * move clean_latent outside of progress_bar * refactor marigold-reusable image processing bits into MarigoldImageProcessor class * clean up the usage example docstring * make ensemble functions members of the pipelines * add early checks in check_inputs rename E into ensemble_size in depth ensembling * fix vae_scale_factor computation * better compatibility with torch.compile better variable naming * move export_depth_to_png to export_utils * remove encode_prediction * improve visualize_depth and visualize_normals to accept multi-dimensional data and lists remove visualization functions from the pipelines move exporting depth as 16-bit PNGs functionality from the depth pipeline update example docstrings * do not shortcut vae.config variables * change all asserts to raise ValueError * rename output_prediction_type to output_type * better variable names clean up variable deletion code * better variable names * pass desc and leave kwargs into the diffusers progress_bar implement nested progress bar for images and steps loops * implement scale_invariant and shift_invariant flags in the ensemble_depth function add scale_invariant and shift_invariant flags readout from the model config further refactor ensemble_depth support ensembling without alignment add ensemble_depth docstring * fix generator device placement checks * move encode_empty_text body into the pipeline call * minor empty text encoding simplifications * adjust pipelines' class docstrings to explain the added construction arguments * improve the scipy failure condition add comments improve docstrings change the default use_full_z_range to True * make input image values range check configurable in the preprocessor refactor load_image_canonical in preprocessor to reject unknown types and return the image in the expected 4D format of tensor and on right device support a list of everything as inputs to the pipeline, change type to PipelineImageInput implement a check that all input list elements have the same dimensions improve docstrings of pipeline outputs remove check_input pipeline argument * remove forgotten print * add prediction_type model config * add uncertainty visualization into export utils fix NaN values in normals uncertainties * change default of output_uncertainty to False better handle the case of an attempt to export or visualize none * fix `output_uncertainty=False` * remove kwargs fix check_inputs according to the new inputs of the pipeline * rename prepare_latent into prepare_latents as in other pipelines annotate prepare_latents in normals pipeline with "Copied from" annotate encode_image in normals pipeline with "Copied from" * move nested-capable `progress_bar` method into the pipelines revert the original `progress_bar` method in pipeline_utils * minor message improvement * fix cpu offloading * move colormap, visualize_depth, export_depth_to_16bit_png, visualize_normals, visualize_uncertainty to marigold_image_processing.py update example docstrings * fix missing comma * change torch.FloatTensor to torch.Tensor * fix importing of MarigoldImageProcessor * fix vae offloading fix batched image encoding remove separate encode_image function and use vae.encode instead * implement marigold's intial tests relax generator checks in line with other pipelines implement return_dict __call__ argument in line with other pipelines * fix num_images computation * remove MarigoldImageProcessor and outputs from import structure update tests * update docstrings * update init * update * style * fix * fix * up * up * up * add simple test * up * update expected np input/output to be channel last * move expand_tensor_or_array into the MarigoldImageProcessor * rewrite tests to follow conventions - hardcoded slices instead of image artifacts write more smoke tests * add basic docs. * add anton's contribution statement * remove todos. * fix assertion values for marigold depth slow tests * fix assertion values for depth normals. * remove print * support AutoencoderTiny in the pipelines * update documentation page add Available Pipelines section add Available Checkpoints section add warning about num_inference_steps * fix missing import in docstring fix wrong value in visualize_depth docstring * [doc] add marigold to pipelines overview * [doc] add section "usage examples" * fix an issue with latents check in the pipelines * add "Frame-by-frame Video Processing with Consistency" section * grammarly * replace tables with images with css-styled images (blindly) * style * print * fix the assertions. * take from the github runner. * take the slices from action artifacts * style. * update with the slices from the runner. * remove unnecessary code blocks. * Revert "[doc] add marigold to pipelines overview" This reverts commit a505165150afd8dab23c474d1a054ea505a56a5f. * remove invitation for new modalities * split out marigold usage examples * doc cleanup --------- Co-authored-by:
yiyixuxu <yixu310@gmail.com> Co-authored-by:
yiyixuxu <yixu310@gmail,com> Co-authored-by:
sayakpaul <spsayakpaul@gmail.com>
-
Dhruv Nair authored
update
-
Sayak Paul authored
* add a more secure way to run tests from a PR. * make pytest more secure. * address dhruv's comments. * improve validation check. * Update .github/workflows/run_tests_from_a_pr.yml Co-authored-by:
Dhruv Nair <dhruv.nair@gmail.com> --------- Co-authored-by:
Dhruv Nair <dhruv.nair@gmail.com>
-
Dhaivat Bhatt authored
* Add details about 1-stage implementation * Add details about 1-stage implementation
-
- 24 May, 2024 9 commits
-
-
Tolga Cangöz authored
* Fix typos * Fix `pipe.enable_model_cpu_offload()` usage * Fix cpu offloading * Update numbers
-
Tolga Cangöz authored
Fix grammatical error
-
Yue Wu authored
sampling bug fix in basic_training.md In the diffusers basic training tutorial, setting the manual seed argument (generator=torch.manual_seed(config.seed)) in the pipeline call inside evaluate() function rewinds the dataloader shuffling, leading to overfitting due to the model seeing same sequence of training examples after every evaluation call. Using generator=torch.Generator(device='cpu').manual_seed(config.seed) avoids this.
-
Dhruv Nair authored
* update * update
-
Lucain authored
* Fix resume_downoad FutureWarning * only resume download
-
Sayak Paul authored
run the documentation workflow in a custom container.
-
Yifan Zhou authored
[Community Pipeline] FRESCO: Spatial-Temporal Correspondence for Zero-Shot Video Translation (#8239) * code and doc * update paper link * remove redundant codes * add example video --------- Co-authored-by:Sayak Paul <spsayakpaul@gmail.com>
-
Dhruv Nair authored
* update * update
-
Dhruv Nair authored
* update * update
-
- 23 May, 2024 1 commit
-
-
Dhruv Nair authored
update Co-authored-by:Sayak Paul <spsayakpaul@gmail.com>
-
- 22 May, 2024 2 commits
-
-
Dhruv Nair authored
update
-
BootesVoid authored
-
- 21 May, 2024 2 commits
-
-
Lucain authored
-
Steven Liu authored
* fix? * fix? * fix
-
- 20 May, 2024 6 commits
-
-
Vinh H. Pham authored
make VAE compatible to torch.compile() Co-authored-by:YiYi Xu <yixu310@gmail.com>
-
Sai-Suraj-27 authored
Fixed few docstrings according to the Google Style Guide.
-
Aleksei Zhuravlev authored
* Update pipeline_stable_diffusion_instruct_pix2pix.py Add `cross_attention_kwargs` to `__call__` method of `StableDiffusionInstructPix2PixPipeline`, which are passed to UNet. * Update documentation for pipeline_stable_diffusion_instruct_pix2pix.py * Update docstring * Update docstring * Fix typing import
-
Junsong Chen authored
* 1. add doc for PixArtSigmaPipeline; --------- Co-authored-by:
Sayak Paul <spsayakpaul@gmail.com> Co-authored-by:
Steven Liu <59462357+stevhliu@users.noreply.github.com> Co-authored-by:
Guillaume LEGENDRE <glegendre01@gmail.com> Co-authored-by:
Álvaro Somoza <asomoza@users.noreply.github.com> Co-authored-by:
Bagheera <59658056+bghira@users.noreply.github.com> Co-authored-by:
bghira <bghira@users.github.com> Co-authored-by:
Hyoungwon Cho <jhw9811@korea.ac.kr> Co-authored-by:
yiyixuxu <yixu310@gmail.com> Co-authored-by:
Tolga Cangöz <46008593+standardAI@users.noreply.github.com> Co-authored-by:
Philip Pham <phillypham@google.com>
-
Nikita authored
-
Jacob Marks authored
-
- 19 May, 2024 1 commit
-
-
Sayak Paul authored
* checking tests * checking ii. * remove prints. * test_pixart_1024 * fix 1024.
-
- 17 May, 2024 1 commit
-
-
Sayak Paul authored
-
- 16 May, 2024 4 commits
-
-
Álvaro Somoza authored
* make _callback_tensor_inputs consistent between sdxl pipelines * forgot this one * fix failing test * fix test_components_function * fix controlnet inpaint tests
-
Alphin Jain authored
Fix conditional teacher model check in train_lcm_distill_lora_sdxl_wds.py Co-authored-by:Sayak Paul <spsayakpaul@gmail.com>
-
Liang Hou authored
Fix CLIP to T5 in logger warning
-
Sai-Suraj-27 authored
* Merged isinstance calls to make the code simpler. * Corrected formatting errors using ruff. --------- Co-authored-by:
Sayak Paul <spsayakpaul@gmail.com> Co-authored-by:
YiYi Xu <yixu310@gmail.com>
-
- 15 May, 2024 4 commits
-
-
Sayak Paul authored
* add a workflow that can be manually triggered on a PR. * remove sudo * add command * small fixes.
-
Guillaume LEGENDRE authored
-
Isamu Isozaki authored
* Init commit * Removed einops * Added default movq config for training * Update explanation of prompts * Fixed inheritance of discriminator and init_tracker * Fixed incompatible api between muse and here * Fixed output * Setup init training * Basic structure done * Removed attention for quick tests * Style fixes * Fixed vae/vqgan styles * Removed redefinition of wandb * Fixed log_validation and tqdm * Nothing commit * Added commit loss to lookup_from_codebook * Update src/diffusers/models/vq_model.py Co-authored-by:
Sayak Paul <spsayakpaul@gmail.com> * Adding perliminary README * Fixed one typo * Local changes * Fixed main issues * Merging * Update src/diffusers/models/vq_model.py Co-authored-by:
Sayak Paul <spsayakpaul@gmail.com> * Testing+Fixed bugs in training script * Some style fixes * Added wandb to docs * Fixed timm test * get testing suite ready. * remove return loss * remove return_loss * Remove diffs * Remove diffs * fix ruff format --------- Co-authored-by:
Sayak Paul <spsayakpaul@gmail.com> Co-authored-by:
Dhruv Nair <dhruv.nair@gmail.com>
-
Sayak Paul authored
decorate StableDiffusion21PipelineSingleFileSlowTests with slow.
-
- 14 May, 2024 4 commits
-
-
Jingyang Zhang authored
add boxdiff to community examples
-
Nikita authored
Fix `added_cond_kwargs` when using IP-Adapter Fix error when using IP-Adapter in pipeline and passing `ip_adapter_image_embeds` instead of `ip_adapter_image` Co-authored-by:YiYi Xu <yixu310@gmail.com>
-
Sayak Paul authored
separate the loading utilities in modeling similar to pipelines.
-
Sayak Paul authored
update to use hf-workflows for reporting
-