"vscode:/vscode.git/clone" did not exist on "88018fcf20cc375a938c1c9fb786fab3ea8fe20c"
- 21 Nov, 2022 1 commit
-
-
Birch-san authored
perf: prefer batched matmuls for attention. added fast-path to Decoder when num_heads=1
-
- 16 Nov, 2022 1 commit
-
-
Kamal Raj authored
* doc string args shape fix * fix styling
-
- 14 Nov, 2022 3 commits
-
-
Joshua Lochner authored
* Fix documentation typo * Fix other typo
-
Nathan Lambert authored
* re-add RL model code * match model forward api * add register_to_config, pass training tests * fix tests, update forward outputs * remove unused code, some comments * add to docs * remove extra embedding code * unify time embedding * remove conv1d output sequential * remove sequential from conv1dblock * style and deleting duplicated code * clean files * remove unused variables * clean variables * add 1d resnet block structure for downsample * rename as unet1d * fix renaming * rename files * add get_block(...) api * unify args for model1d like model2d * minor cleaning * fix docs * improve 1d resnet blocks * fix tests, remove permuts * fix style * add output activation * rename flax blocks file * Add Value Function and corresponding example script to Diffuser implementation (#884) * valuefunction code * start example scripts * missing imports * bug fixes and placeholder example script * add value function scheduler * load value function from hub and get best actions in example * very close to working example * larger batch size for planning * more tests * merge unet1d changes * wandb for debugging, use newer models * success! * turns out we just need more diffusion steps * run on modal * merge and code cleanup * use same api for rl model * fix variance type * wrong normalization function * add tests * style * style and quality * edits based on comments * style and quality * remove unused var * hack unet1d into a value function * add pipeline * fix arg order * add pipeline to core library * community pipeline * fix couple shape bugs * style * Apply suggestions from code review Co-authored-by:
Nathan Lambert <nathan@huggingface.co> * update post merge of scripts * add mdiblock / outblock architecture * Pipeline cleanup (#947) * valuefunction code * start example scripts * missing imports * bug fixes and placeholder example script * add value function scheduler * load value function from hub and get best actions in example * very close to working example * larger batch size for planning * more tests * merge unet1d changes * wandb for debugging, use newer models * success! * turns out we just need more diffusion steps * run on modal * merge and code cleanup * use same api for rl model * fix variance type * wrong normalization function * add tests * style * style and quality * edits based on comments * style and quality * remove unused var * hack unet1d into a value function * add pipeline * fix arg order * add pipeline to core library * community pipeline * fix couple shape bugs * style * Apply suggestions from code review * clean up comments * convert older script to using pipeline and add readme * rename scripts * style, update tests * delete unet rl model file * remove imports in src Co-authored-by:
Nathan Lambert <nathan@huggingface.co> * Update src/diffusers/models/unet_1d_blocks.py * Update tests/test_models_unet.py * RL Cleanup v2 (#965) * valuefunction code * start example scripts * missing imports * bug fixes and placeholder example script * add value function scheduler * load value function from hub and get best actions in example * very close to working example * larger batch size for planning * more tests * merge unet1d changes * wandb for debugging, use newer models * success! * turns out we just need more diffusion steps * run on modal * merge and code cleanup * use same api for rl model * fix variance type * wrong normalization function * add tests * style * style and quality * edits based on comments * style and quality * remove unused var * hack unet1d into a value function * add pipeline * fix arg order * add pipeline to core library * community pipeline * fix couple shape bugs * style * Apply suggestions from code review * clean up comments * convert older script to using pipeline and add readme * rename scripts * style, update tests * delete unet rl model file * remove imports in src * add specific vf block and update tests * style * Update tests/test_models_unet.py Co-authored-by:
Nathan Lambert <nathan@huggingface.co> * fix quality in tests * fix quality style, split test file * fix checks / tests * make timesteps closer to main * unify block API * unify forward api * delete lines in examples * style * examples style * all tests pass * make style * make dance_diff test pass * Refactoring RL PR (#1200) * init file changes * add import utils * finish cleaning files, imports * remove import flags * clean examples * fix imports, tests for merge * update readmes * hotfix for tests * quality * fix some tests * change defaults * more mps test fixes * unet1d defaults * do not default import experimental * defaults for tests * fix tests * fix-copies * fix * changes per Patrik's comments (#1285) * changes per Patrik's comments * update conversion script * fix renaming * skip more mps tests * last test fix * Update examples/rl/README.md Co-authored-by:
Ben Glickenhaus <benglickenhaus@gmail.com>
-
Lime-Cakes authored
Older versions of xformers require query, key, value to be contiguous, this calls .contiguous() on q/k/v before passing to xformers.
-
- 08 Nov, 2022 1 commit
-
-
Suraj Patil authored
handle dtype xformers
-
- 05 Nov, 2022 1 commit
-
-
Pedro Cuenca authored
Flip sin to cos in t embeddings. This was assumed in the previous implementation, but now the default is the opposite. Fixes #1145.
-
- 04 Nov, 2022 1 commit
-
-
Chenguo Lin authored
Co-authored-by:Patrick von Platen <patrick.v.platen@gmail.com>
-
- 03 Nov, 2022 1 commit
-
-
Will Berman authored
* Changes for VQ-diffusion VQVAE Add specify dimension of embeddings to VQModel: `VQModel` will by default set the dimension of embeddings to the number of latent channels. The VQ-diffusion VQVAE has a smaller embedding dimension, 128, than number of latent channels, 256. Add AttnDownEncoderBlock2D and AttnUpDecoderBlock2D to the up and down unet block helpers. VQ-diffusion's VQVAE uses those two block types. * Changes for VQ-diffusion transformer Modify attention.py so SpatialTransformer can be used for VQ-diffusion's transformer. SpatialTransformer: - Can now operate over discrete inputs (classes of vector embeddings) as well as continuous. - `in_channels` was made optional in the constructor so two locations where it was passed as a positional arg were moved to kwargs - modified forward pass to take optional timestep embeddings ImagePositionalEmbeddings: - added to provide positional embeddings to discrete inputs for latent pixels BasicTransformerBlock: - norm layers were made configurable so that the VQ-diffusion could use AdaLayerNorm with timestep embeddings - modified forward pass to take optional timestep embeddings CrossAttention: - now may optionally take a bias parameter for its query, key, and value linear layers FeedForward: - Internal layers are now configurable ApproximateGELU: - Activation function in VQ-diffusion's feedforward layer AdaLayerNorm: - Norm layer modified to incorporate timestep embeddings * Add VQ-diffusion scheduler * Add VQ-diffusion pipeline * Add VQ-diffusion convert script to diffusers * Add VQ-diffusion dummy objects * Add VQ-diffusion markdown docs * Add VQ-diffusion tests * some renaming * some fixes * more renaming * correct * fix typo * correct weights * finalize * fix tests * Apply suggestions from code review Co-authored-by:
Anton Lozhkov <aglozhkov@gmail.com> * Apply suggestions from code review Co-authored-by:
Pedro Cuenca <pedro@huggingface.co> * finish * finish * up Co-authored-by:
Patrick von Platen <patrick.v.platen@gmail.com> Co-authored-by:
Anton Lozhkov <aglozhkov@gmail.com> Co-authored-by:
Pedro Cuenca <pedro@huggingface.co>
-
- 02 Nov, 2022 3 commits
-
-
Kashif Rasul authored
* initial get_sinusoidal_embeddings * added asserts * better var name * fix docs
-
Omiita authored
Fix a small typo fix a typo in `models/attention.py`. weight -> width
-
MatthieuTPHR authored
* 2x speedup using memory efficient attention * remove einops dependency * Swap K, M in op instantiation * Simplify code, remove unnecessary maybe_init call and function, remove unused self.scale parameter * make xformers a soft dependency * remove one-liner functions * change one letter variable to appropriate names * Remove Env variable dependency, remove MemoryEfficientCrossAttention class and use enable_xformers_memory_efficient_attention method * Add memory efficient attention toggle to img2img and inpaint pipelines * Clearer management of xformers' availability * update optimizations markdown to add info about memory efficient attention * add benchmarks for TITAN RTX * More detailed explanation of how the mem eff benchmark were ran * Removing autocast from optimization markdown * import_utils: import torch only if is available Co-authored-by:Nouamane Tazi <nouamane98@gmail.com>
-
- 31 Oct, 2022 2 commits
-
-
Laurent Mazare authored
Remove some unused parameter The `downsample_padding` parameter does not seem to be used in `CrossAttnUpBlock2D` (or by any up block for that matter) so removing it.
-
Patrick von Platen authored
* Remove nn sequential * up
-
- 29 Oct, 2022 2 commits
-
-
Pedro Cuenca authored
* Docs: refer to pre-RC version of PyTorch 1.13.0. * Remove temporary workaround for unavailable op. * Update comment to make it less ambiguous. * Remove use of contiguous in mps. It appears to not longer be necessary. * Special case: use einsum for much better performance in mps * Update mps docs. * MPS: make pipeline work in half precision.
-
Nathan Lambert authored
-
- 28 Oct, 2022 1 commit
-
-
Nouamane Tazi authored
* fix `upsample_nearest_nhwc` for large bsz * fix `upsample_nearest_nhwc` for large bsz
-
- 25 Oct, 2022 3 commits
-
-
Patrick von Platen authored
* add in fp16 * up
-
Patrick von Platen authored
* start * add more logic * Update src/diffusers/models/unet_2d_condition_flax.py * match weights * up * make model work * making class more general, fixing missed file rename * small fix * make new conversion work * up * finalize conversion * up * first batch of variable renamings * remove c and c_prev var names * add mid and out block structure * add pipeline * up * finish conversion * finish * upload * more fixes * Apply suggestions from code review * add attr * up * uP * up * finish tests * finish * uP * finish * fix test * up * naming consistency in tests * Apply suggestions from code review Co-authored-by:
Suraj Patil <surajp815@gmail.com> Co-authored-by:
Pedro Cuenca <pedro@huggingface.co> Co-authored-by:
Nathan Lambert <nathan@huggingface.co> Co-authored-by:
Anton Lozhkov <anton@huggingface.co> * remove hardcoded 16 * Remove bogus * fix some stuff * finish * improve logging * docs * upload Co-authored-by:
Nathan Lambert <nol@berkeley.edu> Co-authored-by:
Suraj Patil <surajp815@gmail.com> Co-authored-by:
Pedro Cuenca <pedro@huggingface.co> Co-authored-by:
Nathan Lambert <nathan@huggingface.co> Co-authored-by:
Anton Lozhkov <anton@huggingface.co>
-
Pedro Cuenca authored
* Docs: refer to pre-RC version of PyTorch 1.13.0. * Remove temporary workaround for unavailable op. * Update comment to make it less ambiguous. * Remove use of contiguous in mps. It appears to not longer be necessary. * Special case: use einsum for much better performance in mps * Update mps docs. * Minor doc update. * Accept suggestion Co-authored-by:
Anton Lozhkov <anton@huggingface.co> Co-authored-by:
Anton Lozhkov <anton@huggingface.co>
-
- 12 Oct, 2022 1 commit
-
-
Nathan Lambert authored
* add or fix license formatting * fix quality
-
- 11 Oct, 2022 2 commits
-
-
Akash Pannu authored
* pass norm_num_groups param and add tests * set resnet_groups for FlaxUNetMidBlock2D * fixed docstrings * fixed typo * using is_flax_available util and created require_flax decorator
-
Suraj Patil authored
* support bf16 for stable diffusion * fix typo * address review comments
-
- 10 Oct, 2022 2 commits
-
-
Nathan Lambert authored
fix typo docstring
-
Nathan Lambert authored
* clean up resnet.py * make style and quality * minor formatting
-
- 07 Oct, 2022 1 commit
-
-
Suraj Patil authored
* handle dtype in vae and image2image pipeline * fix inpaint in fp16 * dtype should be handled in add_noise * style * address review comments * add simple fast tests to check fp16 * fix test name * put mask in fp16
-
- 06 Oct, 2022 2 commits
-
-
Anton Lozhkov authored
Temporarily remove Flax modules from the public API
- 05 Oct, 2022 1 commit
-
-
Nicolas Patry authored
* Removing `autocast` for `35-25% speedup`. * iQuality * Adding a slow test. * Fixing mps noise generation. * Raising error on wrong device, instead of just casting on behalf of user. * Quality. * fix merge Co-authored-by:Nouamane Tazi <nouamane98@gmail.com>
-
- 04 Oct, 2022 3 commits
-
-
NIKHIL A V authored
* renamed single letter variables * renamed x to meaningful variable in resnet.py Hello @patil-suraj can you verify it Thanks * Reformatted using black * renamed x to meaningful variable in resnet.py Hello @patil-suraj can you verify it Thanks * reformatted the files * modified unboundlocalerror in line 374 * removed referenced before error * renamed single variable x -> hidden_state, p-> pad_value Co-authored-by:
Nikhil A V <nikhilav@Nikhils-MacBook-Pro.local> Co-authored-by:
Patrick von Platen <patrick.v.platen@gmail.com> Co-authored-by:
Suraj Patil <surajp815@gmail.com>
-
Pedro Cuenca authored
Remove comments no longer appropriate. There were casting operations before, they are now gone.
-
Kashif Rasul authored
fix docstring fixes #709
-
- 30 Sep, 2022 3 commits
-
-
Nouamane Tazi authored
* revert using baddbmm in attention - to fix `test_stable_diffusion_memory_chunking` test * styling
-
Josh Achiam authored
* Allow resolutions that are not multiples of 64 * ran black * fix bug * add test * more explanation * more comments Co-authored-by:Patrick von Platen <patrick.v.platen@gmail.com>
-
Nouamane Tazi authored
* initial commit * make UNet stream capturable * try to fix noise_pred value * remove cuda graph and keep NB * non blocking unet with PNDMScheduler * make timesteps np arrays for pndm scheduler because lists don't get formatted to tensors in `self.set_format` * make max async in pndm * use channel last format in unet * avoid moving timesteps device in each unet call * avoid memcpy op in `get_timestep_embedding` * add `channels_last` kwarg to `DiffusionPipeline.from_pretrained` * update TODO * replace `channels_last` kwarg with `memory_format` for more generality * revert the channels_last changes to leave it for another PR * remove non_blocking when moving input ids to device * remove blocking from all .to() operations at beginning of pipeline * fix merging * fix merging * model can run in other precisions without autocast * attn refactoring * Revert "attn refactoring" This reverts commit 0c70c0e189cd2c4d8768274c9fcf5b940ee310fb. * remove restriction to run conv_norm in fp32 * use `baddbmm` instead of `matmul`for better in attention for better perf * removing all reshapes to test perf * Revert "removing all reshapes to test perf" This reverts commit 006ccb8a8c6bc7eb7e512392e692a29d9b1553cd. * add shapes comments * hardcore whats needed for jitting * Revert "hardcore whats needed for jitting" This reverts commit 2fa9c698eae2890ac5f8e367ca80532ecf94df9a. * Revert "remove restriction to run conv_norm in fp32" This reverts commit cec592890c32da3d1b78d38b49e4307aedf459b9. * revert using baddmm in attention's forward * cleanup comment * remove restriction to run conv_norm in fp32. no quality loss was noticed This reverts commit cc9bc1339c998ebe9e7d733f910c6d72d9792213. * add more optimizations techniques to docs * Revert "add shapes comments" This reverts commit 31c58eadb8892f95478cdf05229adf678678c5f4. * apply suggestions * make quality * apply suggestions * styling * `scheduler.timesteps` are now arrays so we dont need .to() * remove useless .type() * use mean instead of max in `test_stable_diffusion_inpaint_pipeline_k_lms` * move scheduler timestamps to correct device if tensors * add device to `set_timesteps` in LMSD scheduler * `self.scheduler.set_timesteps` now uses device arg for schedulers that accept it * quick fix * styling * remove kwargs from schedulers `set_timesteps` * revert to using max in K-LMS inpaint pipeline test * Revert "`self.scheduler.set_timesteps` now uses device arg for schedulers that accept it" This reverts commit 00d5a51e5c20d8d445c8664407ef29608106d899. * move timesteps to correct device before loop in SD pipeline * apply previous fix to other SD pipelines * UNet now accepts tensor timesteps even on wrong device, to avoid errors - it shouldnt affect performance if timesteps are alrdy on correct device - it does slow down performance if they're on the wrong device * fix pipeline when timesteps are arrays with strides
-
- 29 Sep, 2022 1 commit
-
-
Partho authored
renamed x to hidden_states
-
- 27 Sep, 2022 1 commit
-
-
Yih-Dar authored
* Fix SpatialTransformer * Fix SpatialTransformer Co-authored-by:ydshieh <ydshieh@users.noreply.github.com>
-
- 23 Sep, 2022 1 commit
-
-
Younes Belkada authored
* documenting `attention_flax.py` file * documenting `embeddings_flax.py` * documenting `unet_blocks_flax.py` * Add new objs to doc page * document `vae_flax.py` * Apply suggestions from code review * modify `unet_2d_condition_flax.py` * make style * Apply suggestions from code review * make style * Apply suggestions from code review * fix indent * fix typo * fix indent unet * Update src/diffusers/models/vae_flax.py * Apply suggestions from code review Co-authored-by:
Pedro Cuenca <pedro@huggingface.co> Co-authored-by:
Mishig Davaadorj <dmishig@gmail.com> Co-authored-by:
Pedro Cuenca <pedro@huggingface.co>
-
- 22 Sep, 2022 1 commit
-
-
Suraj Patil authored
* add grad ckpt to downsample blocks * make it work * don't pass gradient_checkpointing to upsample block * add tests for UNet2DConditionModel * add test_gradient_checkpointing * add gradient_checkpointing for up and down blocks * add functions to enable and disable grad ckpt * remove the forward argument * better naming * make supports_gradient_checkpointing private
-
- 21 Sep, 2022 1 commit
-
-
Younes Belkada authored
replace `dropout_prob` by `dropout` in `vae`
-