- 22 Sep, 2022 1 commit
-
-
Suraj Patil authored
* add grad ckpt to downsample blocks * make it work * don't pass gradient_checkpointing to upsample block * add tests for UNet2DConditionModel * add test_gradient_checkpointing * add gradient_checkpointing for up and down blocks * add functions to enable and disable grad ckpt * remove the forward argument * better naming * make supports_gradient_checkpointing private
-
- 15 Sep, 2022 2 commits
-
-
Pedro Cuenca authored
* First UNet Flax modeling blocks. Mimic the structure of the PyTorch files. The model classes themselves need work, depending on what we do about configuration and initialization. * Remove FlaxUNet2DConfig class. * ignore_for_config non-config args. * Implement `FlaxModelMixin` * Use new mixins for Flax UNet. For some reason the configuration is not correctly applied; the signature of the `__init__` method does not contain all the parameters by the time it's inspected in `extract_init_dict`. * Import `FlaxUNet2DConditionModel` if flax is available. * Rm unused method `framework` * Update src/diffusers/modeling_flax_utils.py Co-authored-by:
Suraj Patil <surajp815@gmail.com> * Indicate types in flax.struct.dataclass as pointed out by @mishig25 Co-authored-by:
Mishig Davaadorj <mishig.davaadorj@coloradocollege.edu> * Fix typo in transformer block. * make style * some more changes * make style * Add comment * Update src/diffusers/modeling_flax_utils.py Co-authored-by:
Patrick von Platen <patrick.v.platen@gmail.com> * Rm unneeded comment * Update docstrings * correct ignore kwargs * make style * Update docstring examples * Make style * Style: remove empty line. * Apply style (after upgrading black from pinned version) * Remove some commented code and unused imports. * Add init_weights (not yet in use until #513). * Trickle down deterministic to blocks. * Rename q, k, v according to the latest PyTorch version. Note that weights were exported with the old names, so we need to be careful. * Flax UNet docstrings, default props as in PyTorch. * Fix minor typos in PyTorch docstrings. * Use FlaxUNet2DConditionOutput as output from UNet. * make style Co-authored-by:
Mishig Davaadorj <dmishig@gmail.com> Co-authored-by:
Mishig Davaadorj <mishig.davaadorj@coloradocollege.edu> Co-authored-by:
Suraj Patil <surajp815@gmail.com> Co-authored-by:
Patrick von Platen <patrick.v.platen@gmail.com>
-
Suraj Patil authored
* pass norm_num_groups to unet blocs and attention * fix UNet2DConditionModel * add norm_num_groups arg in vae * add tests * remove comment * Apply suggestions from code review
-
- 08 Sep, 2022 2 commits
-
-
Kashif Rasul authored
* docs for attention * types for embeddings * unet2d docstrings * UNet2DConditionModel docstrings * fix typos * style and vq-vae docstrings * docstrings for VAE * Update src/diffusers/models/unet_2d.py Co-authored-by:
Patrick von Platen <patrick.v.platen@gmail.com> * make style * added inherits from sentence * docstring to forward * make style * Apply suggestions from code review Co-authored-by:
Pedro Cuenca <pedro@huggingface.co> * finish model docs * up Co-authored-by:
Patrick von Platen <patrick.v.platen@gmail.com> Co-authored-by:
Pedro Cuenca <pedro@huggingface.co>
-
Pedro Cuenca authored
* Initial support for mps in Stable Diffusion pipeline. * Initial "warmup" implementation when using mps. * Make some deterministic tests pass with mps. * Disable training tests when using mps. * SD: generate latents in CPU then move to device. This is especially important when using the mps device, because generators are not supported there. See for example https://github.com/pytorch/pytorch/issues/84288. In addition, the other pipelines seem to use the same approach: generate the random samples then move to the appropriate device. After this change, generating an image in MPS produces the same result as when using the CPU, if the same seed is used. * Remove prints. * Pass AutoencoderKL test_output_pretrained with mps. Sampling from `posterior` must be done in CPU. * Style * Do not use torch.long for log op in mps device. * Perform incompatible padding ops in CPU. UNet tests now pass. See https://github.com/pytorch/pytorch/issues/84535 * Style: fix import order. * Remove unused symbols. * Remove MPSWarmupMixin, do not apply automatically. We do apply warmup in the tests, but not during normal use. This adopts some PR suggestions by @patrickvonplaten. * Add comment for mps fallback to CPU step. * Add README_mps.md for mps installation and use. * Apply `black` to modified files. * Restrict README_mps to SD, show measures in table. * Make PNDM indexing compatible with mps. Addresses #239. * Do not use float64 when using LDMScheduler. Fixes #358. * Fix typo identified by @patil-suraj Co-authored-by:
Suraj Patil <surajp815@gmail.com> * Adapt example to new output style. * Restore 1:1 results reproducibility with CompVis. However, mps latents need to be generated in CPU because generators don't work in the mps device. * Move PyTorch nightly to requirements. * Adapt `test_scheduler_outputs_equivalence` ton MPS. * mps: skip training tests instead of ignoring silently. * Make VQModel tests pass on mps. * mps ddim tests: warmup, increase tolerance. * ScoreSdeVeScheduler indexing made mps compatible. * Make ldm pipeline tests pass using warmup. * Style * Simplify casting as suggested in PR. * Add Known Issues to readme. * `isort` import order. * Remove _mps_warmup helpers from ModelMixin. And just make changes to the tests. * Skip tests using unittest decorator for consistency. * Remove temporary var. * Remove spurious blank space. * Remove unused symbol. * Remove README_mps. Co-authored-by:
Suraj Patil <surajp815@gmail.com> Co-authored-by: Patrick von Platen <patrick.v.platen@gmail.com>
-
- 06 Sep, 2022 2 commits
-
-
Patrick von Platen authored
* up * add tests * correct * up * finish * better naming * Update README.md Co-authored-by:
Pedro Cuenca <pedro@huggingface.co> Co-authored-by:
Pedro Cuenca <pedro@huggingface.co>
-
Pedro Cuenca authored
Use `expand` instead of ones to broadcast tensor. As suggested by @bes-dev. According the documentation this shouldn't take any memory - it just plays with the strides.
-
- 05 Sep, 2022 1 commit
-
-
Patrick von Platen authored
* add outputs for models * add for pipelines * finish schedulers * better naming * adapt tests as well * replace dict access with . access * make schedulers works * finish * correct readme * make bcp compatible * up * small fix * finish * more fixes * more fixes * Apply suggestions from code review Co-authored-by:
Suraj Patil <surajp815@gmail.com> Co-authored-by:
Pedro Cuenca <pedro@huggingface.co> * Update src/diffusers/models/vae.py Co-authored-by:
Pedro Cuenca <pedro@huggingface.co> * Adapt model outputs * Apply more suggestions * finish examples * correct Co-authored-by:
Suraj Patil <surajp815@gmail.com> Co-authored-by:
Pedro Cuenca <pedro@huggingface.co>
-
- 03 Sep, 2022 1 commit
-
-
Sid Sahai authored
* add void check * remove void, add types for params
-
- 02 Sep, 2022 1 commit
-
-
Pedro Cuenca authored
* Use ONNX / Core ML compatible method to broadcast. Unfortunately `tile` could not be used either, it's still not compatible with ONNX. See #284. * Add comment about why broadcast_to is not used. Also, apply style to changed files. * Make sure broadcast remains in same device.
-
- 16 Aug, 2022 1 commit
-
-
Patrick von Platen authored
* [Half precision] Make sure half-precision is correct * Update src/diffusers/models/unet_2d.py * Update src/diffusers/pipelines/stable_diffusion/pipeline_stable_diffusion.py * correct some tests * Apply suggestions from code review Co-authored-by:
Suraj Patil <surajp815@gmail.com> * finalize * finish Co-authored-by:
Suraj Patil <surajp815@gmail.com>
-
- 05 Aug, 2022 1 commit
-
-
Suraj Patil authored
add cross_attention_dim as an argument
-
- 20 Jul, 2022 1 commit
-
-
Patrick von Platen authored
* up * change model name * renaming * more changes * up * up * up * save checkpoint * finish api / naming * finish config renaming * rename all weights * finish really
-