1. 30 Oct, 2025 1 commit
  2. 28 Oct, 2025 1 commit
  3. 24 Oct, 2025 1 commit
  4. 22 Oct, 2025 2 commits
  5. 15 Oct, 2025 1 commit
  6. 30 Sep, 2025 1 commit
  7. 22 Sep, 2025 1 commit
  8. 16 Sep, 2025 1 commit
    • Zijian Zhou's avatar
      Fix autoencoder_kl_wan.py bugs for Wan2.2 VAE (#12335) · d06750a5
      Zijian Zhou authored
      * Update autoencoder_kl_wan.py
      
      When using the Wan2.2 VAE, the spatial compression ratio calculated here is incorrect. It should be 16 instead of 8. Pass it in directly via the config to ensure it’s correct here.
      
      * Update autoencoder_kl_wan.py
      d06750a5
  9. 18 Aug, 2025 1 commit
  10. 04 Aug, 2025 2 commits
  11. 03 Aug, 2025 1 commit
    • naykun's avatar
      Qwen-Image (#12055) · 8e53cd95
      naykun authored
      
      
      * (feat): qwen-image integration
      
      * fix(qwen-image):
      - remove unused logics related to controlnet/ip-adapter
      
      * fix(qwen-image):
      - compatible with attention dispatcher
      - cond cache support
      
      * fix(qwen-image):
      - cond cache registry
      - attention backend argument
      - fix copies
      
      * fix(qwen-image):
      - remove local test
      
      * Update src/diffusers/models/transformers/transformer_qwenimage.py
      
      ---------
      Co-authored-by: default avatarYiYi Xu <yixu310@gmail.com>
      8e53cd95
  12. 02 Aug, 2025 2 commits
  13. 01 Aug, 2025 1 commit
  14. 28 Jul, 2025 1 commit
  15. 24 Jun, 2025 1 commit
  16. 19 Jun, 2025 1 commit
  17. 18 Jun, 2025 1 commit
  18. 30 May, 2025 1 commit
  19. 19 May, 2025 1 commit
  20. 07 May, 2025 1 commit
    • Aryan's avatar
      Cosmos (#10660) · 7b904941
      Aryan authored
      
      
      * begin transformer conversion
      
      * refactor
      
      * refactor
      
      * refactor
      
      * refactor
      
      * refactor
      
      * refactor
      
      * update
      
      * add conversion script
      
      * add pipeline
      
      * make fix-copies
      
      * remove einops
      
      * update docs
      
      * gradient checkpointing
      
      * add transformer test
      
      * update
      
      * debug
      
      * remove prints
      
      * match sigmas
      
      * add vae pt. 1
      
      * finish CV* vae
      
      * update
      
      * update
      
      * update
      
      * update
      
      * update
      
      * update
      
      * make fix-copies
      
      * update
      
      * make fix-copies
      
      * fix
      
      * update
      
      * update
      
      * make fix-copies
      
      * update
      
      * update tests
      
      * handle device and dtype for safety checker; required in latest diffusers
      
      * remove enable_gqa and use repeat_interleave instead
      
      * enforce safety checker; use dummy checker in fast tests
      
      * add review suggestion for ONNX export
      Co-Authored-By: default avatarAsfiya Baig <asfiyab@nvidia.com>
      
      * fix safety_checker issues when not passed explicitly
      
      We could either do what's done in this commit, or update the Cosmos examples to explicitly pass the safety checker
      
      * use cosmos guardrail package
      
      * auto format docs
      
      * update conversion script to support 14B models
      
      * update name CosmosPipeline -> CosmosTextToWorldPipeline
      
      * update docs
      
      * fix docs
      
      * fix group offload test failing for vae
      
      ---------
      Co-authored-by: default avatarAsfiya Baig <asfiyab@nvidia.com>
      7b904941
  21. 05 May, 2025 1 commit
  22. 15 Apr, 2025 1 commit
  23. 13 Apr, 2025 1 commit
  24. 11 Apr, 2025 1 commit
  25. 05 Apr, 2025 1 commit
  26. 02 Apr, 2025 1 commit
    • Bruno Magalhaes's avatar
      remove unnecessary call to `F.pad` (#10620) · fe2b3974
      Bruno Magalhaes authored
      * rewrite memory count without implicitly using dimensions by @ic-synth
      
      * replace F.pad by built-in padding in Conv3D
      
      * in-place sums to reduce memory allocations
      
      * fixed trailing whitespace
      
      * file reformatted
      
      * in-place sums
      
      * simpler in-place expressions
      
      * removed in-place sum, may affect backward propagation logic
      
      * removed in-place sum, may affect backward propagation logic
      
      * removed in-place sum, may affect backward propagation logic
      
      * reverted change
      fe2b3974
  27. 18 Mar, 2025 1 commit
  28. 12 Mar, 2025 1 commit
  29. 07 Mar, 2025 2 commits
  30. 03 Mar, 2025 1 commit
  31. 02 Mar, 2025 1 commit
  32. 14 Feb, 2025 1 commit
    • Aryan's avatar
      Module Group Offloading (#10503) · 9a147b82
      Aryan authored
      
      
      * update
      
      * fix
      
      * non_blocking; handle parameters and buffers
      
      * update
      
      * Group offloading with cuda stream prefetching (#10516)
      
      * cuda stream prefetch
      
      * remove breakpoints
      
      * update
      
      * copy model hook implementation from pab
      
      * update; ~very workaround based implementation but it seems to work as expected; needs cleanup and rewrite
      
      * more workarounds to make it actually work
      
      * cleanup
      
      * rewrite
      
      * update
      
      * make sure to sync current stream before overwriting with pinned params
      
      not doing so will lead to erroneous computations on the GPU and cause bad results
      
      * better check
      
      * update
      
      * remove hook implementation to not deal with merge conflict
      
      * re-add hook changes
      
      * why use more memory when less memory do trick
      
      * why still use slightly more memory when less memory do trick
      
      * optimise
      
      * add model tests
      
      * add pipeline tests
      
      * update docs
      
      * add layernorm and groupnorm
      
      * address review comments
      
      * improve tests; add docs
      
      * improve docs
      
      * Apply suggestions from code review
      Co-authored-by: default avatarSteven Liu <59462357+stevhliu@users.noreply.github.com>
      
      * apply suggestions from code review
      
      * update tests
      
      * apply suggestions from review
      
      * enable_group_offloading -> enable_group_offload for naming consistency
      
      * raise errors if multiple offloading strategies used; add relevant tests
      
      * handle .to() when group offload applied
      
      * refactor some repeated code
      
      * remove unintentional change from merge conflict
      
      * handle .cuda()
      
      ---------
      Co-authored-by: default avatarSteven Liu <59462357+stevhliu@users.noreply.github.com>
      9a147b82
  33. 11 Feb, 2025 1 commit
  34. 28 Jan, 2025 2 commits
  35. 22 Jan, 2025 1 commit
    • Aryan's avatar
      [core] Layerwise Upcasting (#10347) · beacaa55
      Aryan authored
      
      
      * update
      
      * update
      
      * make style
      
      * remove dynamo disable
      
      * add coauthor
      Co-Authored-By: default avatarDhruv Nair <dhruv.nair@gmail.com>
      
      * update
      
      * update
      
      * update
      
      * update mixin
      
      * add some basic tests
      
      * update
      
      * update
      
      * non_blocking
      
      * improvements
      
      * update
      
      * norm.* -> norm
      
      * apply suggestions from review
      
      * add example
      
      * update hook implementation to the latest changes from pyramid attention broadcast
      
      * deinitialize should raise an error
      
      * update doc page
      
      * Apply suggestions from code review
      Co-authored-by: default avatarSteven Liu <59462357+stevhliu@users.noreply.github.com>
      
      * update docs
      
      * update
      
      * refactor
      
      * fix _always_upcast_modules for asym ae and vq_model
      
      * fix lumina embedding forward to not depend on weight dtype
      
      * refactor tests
      
      * add simple lora inference tests
      
      * _always_upcast_modules -> _precision_sensitive_module_patterns
      
      * remove todo comments about review; revert changes to self.dtype in unets because .dtype on ModelMixin should be able to handle fp8 weight case
      
      * check layer dtypes in lora test
      
      * fix UNet1DModelTests::test_layerwise_upcasting_inference
      
      * _precision_sensitive_module_patterns -> _skip_layerwise_casting_patterns based on feedback
      
      * skip test in NCSNppModelTests
      
      * skip tests for AutoencoderTinyTests
      
      * skip tests for AutoencoderOobleckTests
      
      * skip tests for UNet1DModelTests - unsupported pytorch operations
      
      * layerwise_upcasting -> layerwise_casting
      
      * skip tests for UNetRLModelTests; needs next pytorch release for currently unimplemented operation support
      
      * add layerwise fp8 pipeline test
      
      * use xfail
      
      * Apply suggestions from code review
      Co-authored-by: default avatarDhruv Nair <dhruv.nair@gmail.com>
      
      * add assertion with fp32 comparison; add tolerance to fp8-fp32 vs fp32-fp32 comparison (required for a few models' test to pass)
      
      * add note about memory consumption on tesla CI runner for failing test
      
      ---------
      Co-authored-by: default avatarDhruv Nair <dhruv.nair@gmail.com>
      Co-authored-by: default avatarSteven Liu <59462357+stevhliu@users.noreply.github.com>
      beacaa55