1. 23 Dec, 2024 2 commits
  2. 20 Dec, 2024 1 commit
  3. 19 Dec, 2024 1 commit
  4. 16 Dec, 2024 1 commit
    • Aryan's avatar
      [core] Hunyuan Video (#10136) · aace1f41
      Aryan authored
      
      
      * copy transformer
      
      * copy vae
      
      * copy pipeline
      
      * make fix-copies
      
      * refactor; make original code work with diffusers; test latents for comparison generated with this commit
      
      * move rope into pipeline; remove flash attention; refactor
      
      * begin conversion script
      
      * make style
      
      * refactor attention
      
      * refactor
      
      * refactor final layer
      
      * their mlp -> our feedforward
      
      * make style
      
      * add docs
      
      * refactor layer names
      
      * refactor modulation
      
      * cleanup
      
      * refactor norms
      
      * refactor activations
      
      * refactor single blocks attention
      
      * refactor attention processor
      
      * make style
      
      * cleanup a bit
      
      * refactor double transformer block attention
      
      * update mochi attn proc
      
      * use diffusers attention implementation in all modules; checkpoint for all values matching original
      
      * remove helper functions in vae
      
      * refactor upsample
      
      * refactor causal conv
      
      * refactor resnet
      
      * refactor
      
      * refactor
      
      * refactor
      
      * grad checkpointing
      
      * autoencoder test
      
      * fix scaling factor
      
      * refactor clip
      
      * refactor llama text encoding
      
      * add coauthor
      Co-Authored-By: default avatar"Gregory D. Hunkins" <greg@ollano.com>
      
      * refactor rope; diff: 0.14990234375; reason and fix: create rope grid on cpu and move to device
      
      Note: The following line diverges from original behaviour. We create the grid on the device, whereas
      original implementation creates it on CPU and then moves it to device. This results in numerical
      differences in layerwise debugging outputs, but visually it is the same.
      
      * use diffusers timesteps embedding; diff: 0.10205078125
      
      * rename
      
      * convert
      
      * update
      
      * add tests for transformer
      
      * add pipeline tests; text encoder 2 is not optional
      
      * fix attention implementation for torch
      
      * add example
      
      * update docs
      
      * update docs
      
      * apply suggestions from review
      
      * refactor vae
      
      * update
      
      * Apply suggestions from code review
      Co-authored-by: default avatarhlky <hlky@hlky.ac>
      
      * Update src/diffusers/pipelines/hunyuan_video/pipeline_hunyuan_video.py
      Co-authored-by: default avatarhlky <hlky@hlky.ac>
      
      * Update src/diffusers/pipelines/hunyuan_video/pipeline_hunyuan_video.py
      Co-authored-by: default avatarhlky <hlky@hlky.ac>
      
      * make fix-copies
      
      * update
      
      ---------
      Co-authored-by: default avatar"Gregory D. Hunkins" <greg@ollano.com>
      Co-authored-by: default avatarhlky <hlky@hlky.ac>
      aace1f41
  5. 15 Dec, 2024 1 commit
    • Junsong Chen's avatar
      [Sana] Add Sana, including `SanaPipeline`, `SanaPAGPipeline`,... · 5a196e3d
      Junsong Chen authored
      
      [Sana] Add Sana, including `SanaPipeline`, `SanaPAGPipeline`, `LinearAttentionProcessor`, `Flow-based DPM-sovler` and so on. (#9982)
      
      * first add a script for DC-AE;
      
      * DC-AE init
      
      * replace triton with custom implementation
      
      * 1. rename file and remove un-used codes;
      
      * no longer rely on omegaconf and dataclass
      
      * replace custom activation with diffuers activation
      
      * remove dc_ae attention in attention_processor.py
      
      * iinherit from ModelMixin
      
      * inherit from ConfigMixin
      
      * dc-ae reduce to one file
      
      * update downsample and upsample
      
      * clean code
      
      * support DecoderOutput
      
      * remove get_same_padding and val2tuple
      
      * remove autocast and some assert
      
      * update ResBlock
      
      * remove contents within super().__init__
      
      * Update src/diffusers/models/autoencoders/dc_ae.py
      Co-authored-by: default avatarYiYi Xu <yixu310@gmail.com>
      
      * remove opsequential
      
      * update other blocks to support the removal of build_norm
      
      * remove build encoder/decoder project in/out
      
      * remove inheritance of RMSNorm2d from LayerNorm
      
      * remove reset_parameters for RMSNorm2d
      Co-authored-by: default avatarYiYi Xu <yixu310@gmail.com>
      
      * remove device and dtype in RMSNorm2d __init__
      Co-authored-by: default avatarYiYi Xu <yixu310@gmail.com>
      
      * Update src/diffusers/models/autoencoders/dc_ae.py
      Co-authored-by: default avatarYiYi Xu <yixu310@gmail.com>
      
      * Update src/diffusers/models/autoencoders/dc_ae.py
      Co-authored-by: default avatarYiYi Xu <yixu310@gmail.com>
      
      * Update src/diffusers/models/autoencoders/dc_ae.py
      Co-authored-by: default avatarYiYi Xu <yixu310@gmail.com>
      
      * remove op_list & build_block
      
      * remove build_stage_main
      
      * change file name to autoencoder_dc
      
      * move LiteMLA to attention.py
      
      * align with other vae decode output;
      
      * add DC-AE into init files;
      
      * update
      
      * make quality && make style;
      
      * quick push before dgx disappears again
      
      * update
      
      * make style
      
      * update
      
      * update
      
      * fix
      
      * refactor
      
      * refactor
      
      * refactor
      
      * update
      
      * possibly change to nn.Linear
      
      * refactor
      
      * make fix-copies
      
      * replace vae with ae
      
      * replace get_block_from_block_type to get_block
      
      * replace downsample_block_type from Conv to conv for consistency
      
      * add scaling factors
      
      * incorporate changes for all checkpoints
      
      * make style
      
      * move mla to attention processor file; split qkv conv to linears
      
      * refactor
      
      * add tests
      
      * from original file loader
      
      * add docs
      
      * add standard autoencoder methods
      
      * combine attention processor
      
      * fix tests
      
      * update
      
      * minor fix
      
      * minor fix
      
      * minor fix & in/out shortcut rename
      
      * minor fix
      
      * make style
      
      * fix paper link
      
      * update docs
      
      * update single file loading
      
      * make style
      
      * remove single file loading support; todo for DN6
      
      * Apply suggestions from code review
      Co-authored-by: default avatarSteven Liu <59462357+stevhliu@users.noreply.github.com>
      
      * add abstract
      
      * 1. add DCAE into diffusers;
      2. make style and make quality;
      
      * add DCAE_HF into diffusers;
      
      * bug fixed;
      
      * add SanaPipeline, SanaTransformer2D into diffusers;
      
      * add sanaLinearAttnProcessor2_0;
      
      * first update for SanaTransformer;
      
      * first update for SanaPipeline;
      
      * first success run SanaPipeline;
      
      * model output finally match with original model with the same intput;
      
      * code update;
      
      * code update;
      
      * add a flow dpm-solver scripts
      
      * 🎉[important update]
      1. Integrate flow-dpm-sovler into diffusers;
      2. finally run successfully on both `FlowMatchEulerDiscreteScheduler` and `FlowDPMSolverMultistepScheduler`;
      
      * 🎉🔧
      
      [important update & fix huge bugs!!]
      1. add SanaPAGPipeline & several related Sana linear attention operators;
      2. `SanaTransformer2DModel` not supports multi-resolution input;
      2. fix the multi-scale HW bugs in SanaPipeline and SanaPAGPipeline;
      3. fix the flow-dpm-solver set_timestep() init `model_output` and `lower_order_nums` bugs;
      
      * remove prints;
      
      * add convert sana official checkpoint to diffusers format Safetensor.
      
      * Update src/diffusers/models/transformers/sana_transformer_2d.py
      Co-authored-by: default avatarSteven Liu <59462357+stevhliu@users.noreply.github.com>
      
      * Update src/diffusers/models/transformers/sana_transformer_2d.py
      Co-authored-by: default avatarSteven Liu <59462357+stevhliu@users.noreply.github.com>
      
      * Update src/diffusers/models/transformers/sana_transformer_2d.py
      Co-authored-by: default avatarSteven Liu <59462357+stevhliu@users.noreply.github.com>
      
      * Update src/diffusers/pipelines/pag/pipeline_pag_sana.py
      Co-authored-by: default avatarSteven Liu <59462357+stevhliu@users.noreply.github.com>
      
      * Update src/diffusers/models/transformers/sana_transformer_2d.py
      Co-authored-by: default avatarSteven Liu <59462357+stevhliu@users.noreply.github.com>
      
      * Update src/diffusers/models/transformers/sana_transformer_2d.py
      Co-authored-by: default avatarSteven Liu <59462357+stevhliu@users.noreply.github.com>
      
      * Update src/diffusers/pipelines/sana/pipeline_sana.py
      Co-authored-by: default avatarSteven Liu <59462357+stevhliu@users.noreply.github.com>
      
      * Update src/diffusers/pipelines/sana/pipeline_sana.py
      Co-authored-by: default avatarSteven Liu <59462357+stevhliu@users.noreply.github.com>
      
      * update Sana for DC-AE's recent commit;
      
      * make style && make quality
      
      * Add StableDiffusion3PAGImg2Img Pipeline + Fix SD3 Unconditional PAG (#9932)
      
      * fix progress bar updates in SD 1.5 PAG Img2Img pipeline
      
      ---------
      Co-authored-by: default avatarVinh H. Pham <phamvinh257@gmail.com>
      Co-authored-by: default avatarSayak Paul <spsayakpaul@gmail.com>
      
      * make the vae can be None in `__init__` of `SanaPipeline`
      
      * Update src/diffusers/models/transformers/sana_transformer_2d.py
      Co-authored-by: default avatarhlky <hlky@hlky.ac>
      
      * change the ae related code due to the latest update of DCAE branch;
      
      * change the ae related code due to the latest update of DCAE branch;
      
      * 1. change code based on AutoencoderDC;
      2. fix the bug of new GLUMBConv;
      3. run success;
      
      * update for solving conversation.
      
      * 1. fix bugs and run convert script success;
      2. Downloading ckpt from hub automatically;
      
      * make style && make quality;
      
      * 1. remove un-unsed parameters in init;
      2. code update;
      
      * remove test file
      
      * refactor; add docs; add tests; update conversion script
      
      * make style
      
      * make fix-copies
      
      * refactor
      
      * udpate pipelines
      
      * pag tests and refactor
      
      * remove sana pag conversion script
      
      * handle weight casting in conversion script
      
      * update conversion script
      
      * add a processor
      
      * 1. add bf16 pth file path;
      2. add complex human instruct in pipeline;
      
      * fix fast \tests
      
      * change gemma-2-2b-it ckpt to a non-gated repo;
      
      * fix the pth path bug in conversion script;
      
      * change grad ckpt to original; make style
      
      * fix the complex_human_instruct bug and typo;
      
      * remove dpmsolver flow scheduler
      
      * apply review suggestions
      
      * change the `FlowMatchEulerDiscreteScheduler` to default `DPMSolverMultistepScheduler` with flow matching scheduler.
      
      * fix the tokenizer.padding_side='right' bug;
      
      * update docs
      
      * make fix-copies
      
      * fix imports
      
      * fix docs
      
      * add integration test
      
      * update docs
      
      * update examples
      
      * fix convert_model_output in schedulers
      
      * fix failing tests
      
      ---------
      Co-authored-by: default avatarJunyu Chen <chenjydl2003@gmail.com>
      Co-authored-by: default avatarYiYi Xu <yixu310@gmail.com>
      Co-authored-by: default avatarSayak Paul <spsayakpaul@gmail.com>
      Co-authored-by: default avatarchenjy2003 <70215701+chenjy2003@users.noreply.github.com>
      Co-authored-by: default avatarAryan <aryan@huggingface.co>
      Co-authored-by: default avatarSteven Liu <59462357+stevhliu@users.noreply.github.com>
      Co-authored-by: default avatarhlky <hlky@hlky.ac>
      5a196e3d
  6. 12 Dec, 2024 1 commit
    • Aryan's avatar
      [core] LTX Video (#10021) · 96c376a5
      Aryan authored
      
      
      * transformer
      
      * make style & make fix-copies
      
      * transformer
      
      * add transformer tests
      
      * 80% vae
      
      * make style
      
      * make fix-copies
      
      * fix
      
      * undo cogvideox changes
      
      * update
      
      * update
      
      * match vae
      
      * add docs
      
      * t2v pipeline working; scheduler needs to be checked
      
      * docs
      
      * add pipeline test
      
      * update
      
      * update
      
      * make fix-copies
      
      * Apply suggestions from code review
      Co-authored-by: default avatarSteven Liu <59462357+stevhliu@users.noreply.github.com>
      
      * update
      
      * copy t2v to i2v pipeline
      
      * update
      
      * apply review suggestions
      
      * update
      
      * make style
      
      * remove framewise encoding/decoding
      
      * pack/unpack latents
      
      * image2video
      
      * update
      
      * make fix-copies
      
      * update
      
      * update
      
      * rope scale fix
      
      * debug layerwise code
      
      * remove debug
      
      * Apply suggestions from code review
      Co-authored-by: default avatarYiYi Xu <yixu310@gmail.com>
      
      * propagate precision changes to i2v pipeline
      
      * remove downcast
      
      * address review comments
      
      * fix comment
      
      * address review comments
      
      * [Single File] LTX support for loading original weights (#10135)
      
      * from original file mixin for ltx
      
      * undo config mapping fn changes
      
      * update
      
      * add single file to pipelines
      
      * update docs
      
      * Update src/diffusers/models/autoencoders/autoencoder_kl_ltx.py
      
      * Update src/diffusers/models/autoencoders/autoencoder_kl_ltx.py
      
      * rename classes based on ltx review
      
      * point to original repository for inference
      
      * make style
      
      * resolve conflicts correctly
      
      ---------
      Co-authored-by: default avatarSteven Liu <59462357+stevhliu@users.noreply.github.com>
      Co-authored-by: default avatarYiYi Xu <yixu310@gmail.com>
      96c376a5
  7. 06 Dec, 2024 1 commit
    • Junsong Chen's avatar
      [DC-AE] Add the official Deep Compression Autoencoder code(32x,64x,128x compression ratio); (#9708) · cd892041
      Junsong Chen authored
      
      
      * first add a script for DC-AE;
      
      * DC-AE init
      
      * replace triton with custom implementation
      
      * 1. rename file and remove un-used codes;
      
      * no longer rely on omegaconf and dataclass
      
      * replace custom activation with diffuers activation
      
      * remove dc_ae attention in attention_processor.py
      
      * iinherit from ModelMixin
      
      * inherit from ConfigMixin
      
      * dc-ae reduce to one file
      
      * update downsample and upsample
      
      * clean code
      
      * support DecoderOutput
      
      * remove get_same_padding and val2tuple
      
      * remove autocast and some assert
      
      * update ResBlock
      
      * remove contents within super().__init__
      
      * Update src/diffusers/models/autoencoders/dc_ae.py
      Co-authored-by: default avatarYiYi Xu <yixu310@gmail.com>
      
      * remove opsequential
      
      * update other blocks to support the removal of build_norm
      
      * remove build encoder/decoder project in/out
      
      * remove inheritance of RMSNorm2d from LayerNorm
      
      * remove reset_parameters for RMSNorm2d
      Co-authored-by: default avatarYiYi Xu <yixu310@gmail.com>
      
      * remove device and dtype in RMSNorm2d __init__
      Co-authored-by: default avatarYiYi Xu <yixu310@gmail.com>
      
      * Update src/diffusers/models/autoencoders/dc_ae.py
      Co-authored-by: default avatarYiYi Xu <yixu310@gmail.com>
      
      * Update src/diffusers/models/autoencoders/dc_ae.py
      Co-authored-by: default avatarYiYi Xu <yixu310@gmail.com>
      
      * Update src/diffusers/models/autoencoders/dc_ae.py
      Co-authored-by: default avatarYiYi Xu <yixu310@gmail.com>
      
      * remove op_list & build_block
      
      * remove build_stage_main
      
      * change file name to autoencoder_dc
      
      * move LiteMLA to attention.py
      
      * align with other vae decode output;
      
      * add DC-AE into init files;
      
      * update
      
      * make quality && make style;
      
      * quick push before dgx disappears again
      
      * update
      
      * make style
      
      * update
      
      * update
      
      * fix
      
      * refactor
      
      * refactor
      
      * refactor
      
      * update
      
      * possibly change to nn.Linear
      
      * refactor
      
      * make fix-copies
      
      * replace vae with ae
      
      * replace get_block_from_block_type to get_block
      
      * replace downsample_block_type from Conv to conv for consistency
      
      * add scaling factors
      
      * incorporate changes for all checkpoints
      
      * make style
      
      * move mla to attention processor file; split qkv conv to linears
      
      * refactor
      
      * add tests
      
      * from original file loader
      
      * add docs
      
      * add standard autoencoder methods
      
      * combine attention processor
      
      * fix tests
      
      * update
      
      * minor fix
      
      * minor fix
      
      * minor fix & in/out shortcut rename
      
      * minor fix
      
      * make style
      
      * fix paper link
      
      * update docs
      
      * update single file loading
      
      * make style
      
      * remove single file loading support; todo for DN6
      
      * Apply suggestions from code review
      Co-authored-by: default avatarSteven Liu <59462357+stevhliu@users.noreply.github.com>
      
      * add abstract
      
      ---------
      Co-authored-by: default avatarJunyu Chen <chenjydl2003@gmail.com>
      Co-authored-by: default avatarYiYi Xu <yixu310@gmail.com>
      Co-authored-by: default avatarchenjy2003 <70215701+chenjy2003@users.noreply.github.com>
      Co-authored-by: default avatarAryan <aryan@huggingface.co>
      Co-authored-by: default avatarSteven Liu <59462357+stevhliu@users.noreply.github.com>
      cd892041
  8. 04 Dec, 2024 2 commits
    • Sayak Paul's avatar
      [tests] refactor vae tests (#9808) · c1926cef
      Sayak Paul authored
      
      
      * add: autoencoderkl tests
      
      * autoencodertiny.
      
      * fix
      
      * asymmetric autoencoder.
      
      * more
      
      * integration tests for stable audio decoder.
      
      * consistency decoder vae tests
      
      * remove grad check from consistency decoder.
      
      * cog
      
      * bye test_models_vae.py
      
      * fix
      
      * fix
      
      * remove allegro
      
      * fixes
      
      * fixes
      
      * fixes
      
      ---------
      Co-authored-by: default avatarDhruv Nair <dhruv.nair@gmail.com>
      c1926cef
    • Ivan Skorokhodov's avatar
      Use parameters + buffers when deciding upscale_dtype (#9882) · 8421c146
      Ivan Skorokhodov authored
      Sometimes, the decoder might lack parameters and only buffers (e.g., this happens when we manually need to convert all the parameters to buffers — e.g. to avoid packing fp16 and fp32 parameters with FSDP)
      8421c146
  9. 03 Dec, 2024 1 commit
  10. 29 Nov, 2024 1 commit
  11. 18 Nov, 2024 1 commit
  12. 08 Nov, 2024 1 commit
  13. 05 Nov, 2024 1 commit
    • Aryan's avatar
      [core] Mochi T2V (#9769) · 3f329a42
      Aryan authored
      
      
      * update
      
      * udpate
      
      * update transformer
      
      * make style
      
      * fix
      
      * add conversion script
      
      * update
      
      * fix
      
      * update
      
      * fix
      
      * update
      
      * fixes
      
      * make style
      
      * update
      
      * update
      
      * update
      
      * init
      
      * update
      
      * update
      
      * add
      
      * up
      
      * up
      
      * up
      
      * update
      
      * mochi transformer
      
      * remove original implementation
      
      * make style
      
      * update inits
      
      * update conversion script
      
      * docs
      
      * Update src/diffusers/pipelines/mochi/pipeline_mochi.py
      Co-authored-by: default avatarDhruv Nair <dhruv.nair@gmail.com>
      
      * Update src/diffusers/pipelines/mochi/pipeline_mochi.py
      Co-authored-by: default avatarDhruv Nair <dhruv.nair@gmail.com>
      
      * fix docs
      
      * pipeline fixes
      
      * make style
      
      * invert sigmas in scheduler; fix pipeline
      
      * fix pipeline num_frames
      
      * flip proj and gate in swiglu
      
      * make style
      
      * fix
      
      * make style
      
      * fix tests
      
      * latent mean and std fix
      
      * update
      
      * cherry-pick 1069d210e1b9e84a366cdc7a13965626ea258178
      
      * remove additional sigma already handled by flow match scheduler
      
      * fix
      
      * remove hardcoded value
      
      * replace conv1x1 with linear
      
      * Update src/diffusers/pipelines/mochi/pipeline_mochi.py
      Co-authored-by: default avatarDhruv Nair <dhruv.nair@gmail.com>
      
      * framewise decoding and conv_cache
      
      * make style
      
      * Apply suggestions from code review
      
      * mochi vae encoder changes
      
      * rebase correctly
      
      * Update scripts/convert_mochi_to_diffusers.py
      
      * fix tests
      
      * fixes
      
      * make style
      
      * update
      
      * make style
      
      * update
      
      * add framewise and tiled encoding
      
      * make style
      
      * make original vae implementation behaviour the default; note: framewise encoding does not work
      
      * remove framewise encoding implementation due to presence of attn layers
      
      * fight test 1
      
      * fight test 2
      
      ---------
      Co-authored-by: default avatarDhruv Nair <dhruv.nair@gmail.com>
      Co-authored-by: default avataryiyixuxu <yixu310@gmail.com>
      3f329a42
  14. 30 Oct, 2024 1 commit
  15. 29 Oct, 2024 1 commit
  16. 16 Oct, 2024 1 commit
  17. 02 Oct, 2024 1 commit
  18. 28 Sep, 2024 1 commit
  19. 26 Sep, 2024 1 commit
  20. 16 Sep, 2024 1 commit
    • Yuxuan.Zhang's avatar
      CogVideoX-5b-I2V support (#9418) · 8336405e
      Yuxuan.Zhang authored
      
      
      * draft Init
      
      * draft
      
      * vae encode image
      
      * make style
      
      * image latents preparation
      
      * remove image encoder from conversion script
      
      * fix minor bugs
      
      * make pipeline work
      
      * make style
      
      * remove debug prints
      
      * fix imports
      
      * update example
      
      * make fix-copies
      
      * add fast tests
      
      * fix import
      
      * update vae
      
      * update docs
      
      * update image link
      
      * apply suggestions from review
      
      * apply suggestions from review
      
      * add slow test
      
      * make use of learned positional embeddings
      
      * apply suggestions from review
      
      * doc change
      
      * Update convert_cogvideox_to_diffusers.py
      
      * make style
      
      * final changes
      
      * make style
      
      * fix tests
      
      ---------
      Co-authored-by: default avatarAryan <aryan@huggingface.co>
      8336405e
  21. 02 Sep, 2024 1 commit
  22. 23 Aug, 2024 1 commit
  23. 13 Aug, 2024 1 commit
    • Aryan's avatar
      [refactor] CogVideoX followups + tiled decoding support (#9150) · a85b34e7
      Aryan authored
      * refactor context parallel cache; update torch compile time benchmark
      
      * add tiling support
      
      * make style
      
      * remove num_frames % 8 == 0 requirement
      
      * update default num_frames to original value
      
      * add explanations + refactor
      
      * update torch compile example
      
      * update docs
      
      * update
      
      * clean up if-statements
      
      * address review comments
      
      * add test for vae tiling
      
      * update docs
      
      * update docs
      
      * update docstrings
      
      * add modeling test for cogvideox transformer
      
      * make style
      a85b34e7
  24. 07 Aug, 2024 1 commit
  25. 30 Jul, 2024 1 commit
    • Yoach Lacombe's avatar
      Stable Audio integration (#8716) · 69e72b1d
      Yoach Lacombe authored
      
      
      * WIP modeling code and pipeline
      
      * add custom attention processor + custom activation + add to init
      
      * correct ProjectionModel forward
      
      * add stable audio to __initèè
      
      * add autoencoder and update pipeline and modeling code
      
      * add half Rope
      
      * add partial rotary v2
      
      * add temporary modfis to scheduler
      
      * add EDM DPM Solver
      
      * remove TODOs
      
      * clean GLU
      
      * remove att.group_norm to attn processor
      
      * revert back src/diffusers/schedulers/scheduling_dpmsolver_multistep.py
      
      * refactor GLU -> SwiGLU
      
      * remove redundant args
      
      * add channel multiples in autoencoder docstrings
      
      * changes in docsrtings and copyright headers
      
      * clean pipeline
      
      * further cleaning
      
      * remove peft and lora and fromoriginalmodel
      
      * Delete src/diffusers/pipelines/stable_audio/diffusers.code-workspace
      
      * make style
      
      * dummy models
      
      * fix copied from
      
      * add fast oobleck tests
      
      * add brownian tree
      
      * oobleck autoencoder slow tests
      
      * remove TODO
      
      * fast stable audio pipeline tests
      
      * add slow tests
      
      * make style
      
      * add first version of docs
      
      * wrap is_torchsde_available to the scheduler
      
      * fix slow test
      
      * test with input waveform
      
      * add input waveform
      
      * remove some todos
      
      * create stableaudio gaussian projection + make style
      
      * add pipeline to toctree
      
      * fix copied from
      
      * make quality
      
      * refactor timestep_features->time_proj
      
      * refactor joint_attention_kwargs->cross_attention_kwargs
      
      * remove forward_chunk
      
      * move StableAudioDitModel to transformers folder
      
      * correct convert + remove partial rotary embed
      
      * apply suggestions from yiyixuxu -> removing attn.kv_heads
      
      * remove temb
      
      * remove cross_attention_kwargs
      
      * further removal of cross_attention_kwargs
      
      * remove text encoder autocast to fp16
      
      * continue removing autocast
      
      * make style
      
      * refactor how text and audio are embedded
      
      * add paper
      
      * update example code
      
      * make style
      
      * unify projection model forward + fix device placement
      
      * make style
      
      * remove fuse qkv
      
      * apply suggestions from review
      
      * Update src/diffusers/pipelines/stable_audio/pipeline_stable_audio.py
      Co-authored-by: default avatarYiYi Xu <yixu310@gmail.com>
      
      * make style
      
      * smaller models in fast tests
      
      * pass sequential offloading fast tests
      
      * add docs for vae and autoencoder
      
      * make style and update example
      
      * remove useless import
      
      * add cosine scheduler
      
      * dummy classes
      
      * cosine scheduler docs
      
      * better description of scheduler
      
      ---------
      Co-authored-by: default avatarYiYi Xu <yixu310@gmail.com>
      69e72b1d
  26. 24 Jul, 2024 1 commit
    • Sayak Paul's avatar
      [Core] fix QKV fusion for attention (#8829) · 50d21f7c
      Sayak Paul authored
      * start debugging the problem,
      
      * start
      
      * fix
      
      * fix
      
      * fix imports.
      
      * handle hunyuan
      
      * remove residuals.
      
      * add a check for making sure there's appropriate procs.
      
      * add more rigor to the tests.
      
      * fix test
      
      * remove redundant check
      
      * fix-copies
      
      * move check_qkv_fusion_matches_attn_procs_length and check_qkv_fusion_processors_exist.
      50d21f7c
  27. 23 Jul, 2024 1 commit
  28. 11 Jul, 2024 1 commit
  29. 27 Jun, 2024 1 commit
  30. 21 Jun, 2024 1 commit
  31. 18 Jun, 2024 1 commit
  32. 12 Jun, 2024 1 commit
  33. 04 Jun, 2024 1 commit
  34. 29 May, 2024 2 commits
  35. 20 May, 2024 1 commit
  36. 15 May, 2024 1 commit
    • Isamu Isozaki's avatar
      Adding VQGAN Training script (#5483) · d27e996c
      Isamu Isozaki authored
      
      
      * Init commit
      
      * Removed einops
      
      * Added default movq config for training
      
      * Update explanation of prompts
      
      * Fixed inheritance of discriminator and init_tracker
      
      * Fixed incompatible api between muse and here
      
      * Fixed output
      
      * Setup init training
      
      * Basic structure done
      
      * Removed attention for quick tests
      
      * Style fixes
      
      * Fixed vae/vqgan styles
      
      * Removed redefinition of wandb
      
      * Fixed log_validation and tqdm
      
      * Nothing commit
      
      * Added commit loss to lookup_from_codebook
      
      * Update src/diffusers/models/vq_model.py
      Co-authored-by: default avatarSayak Paul <spsayakpaul@gmail.com>
      
      * Adding perliminary README
      
      * Fixed one typo
      
      * Local changes
      
      * Fixed main issues
      
      * Merging
      
      * Update src/diffusers/models/vq_model.py
      Co-authored-by: default avatarSayak Paul <spsayakpaul@gmail.com>
      
      * Testing+Fixed bugs in training script
      
      * Some style fixes
      
      * Added wandb to docs
      
      * Fixed timm test
      
      * get testing suite ready.
      
      * remove return loss
      
      * remove return_loss
      
      * Remove diffs
      
      * Remove diffs
      
      * fix ruff format
      
      ---------
      Co-authored-by: default avatarSayak Paul <spsayakpaul@gmail.com>
      Co-authored-by: default avatarDhruv Nair <dhruv.nair@gmail.com>
      d27e996c
  37. 10 May, 2024 1 commit
    • Mark Van Aken's avatar
      #7535 Update FloatTensor type hints to Tensor (#7883) · be4afa0b
      Mark Van Aken authored
      * find & replace all FloatTensors to Tensor
      
      * apply formatting
      
      * Update torch.FloatTensor to torch.Tensor in the remaining files
      
      * formatting
      
      * Fix the rest of the places where FloatTensor is used as well as in documentation
      
      * formatting
      
      * Update new file from FloatTensor to Tensor
      be4afa0b