1. 12 Mar, 2025 1 commit
  2. 07 Mar, 2025 1 commit
  3. 03 Mar, 2025 1 commit
  4. 02 Mar, 2025 1 commit
  5. 25 Feb, 2025 1 commit
  6. 24 Feb, 2025 2 commits
  7. 15 Feb, 2025 1 commit
    • Yuxuan Zhang's avatar
      CogView4 (supports different length c and uc) (#10649) · d90cd362
      Yuxuan Zhang authored
      
      
      * init
      
      * encode with glm
      
      * draft schedule
      
      * feat(scheduler): Add CogView scheduler implementation
      
      * feat(embeddings): add CogView 2D rotary positional embedding
      
      * 1
      
      * Update pipeline_cogview4.py
      
      * fix the timestep init and sigma
      
      * update latent
      
      * draft patch(not work)
      
      * fix
      
      * [WIP][cogview4]: implement initial CogView4 pipeline
      
      Implement the basic CogView4 pipeline structure with the following changes:
      - Add CogView4 pipeline implementation
      - Implement DDIM scheduler for CogView4
      - Add CogView3Plus transformer architecture
      - Update embedding models
      
      Current limitations:
      - CFG implementation uses padding for sequence length alignment
      - Need to verify transformer inference alignment with Megatron
      
      TODO:
      - Consider separate forward passes for condition/uncondition
        instead of padding approach
      
      * [WIP][cogview4][refactor]: Split condition/uncondition forward pass in CogView4 pipeline
      
      Split the forward pass for conditional and unconditional predictions in the CogView4 pipeline to match the original implementation. The noise prediction is now done separately for each case before combining them for guidance. However, the results still need improvement.
      
      This is a work in progress as the generated images are not yet matching expected quality.
      
      * use with -2 hidden state
      
      * remove text_projector
      
      * 1
      
      * [WIP] Add tensor-reload to align input from transformer block
      
      * [WIP] for older glm
      
      * use with cogview4 transformers forward twice of u and uc
      
      * Update convert_cogview4_to_diffusers.py
      
      * remove this
      
      * use main example
      
      * change back
      
      * reset
      
      * setback
      
      * back
      
      * back 4
      
      * Fix qkv conversion logic for CogView4 to Diffusers format
      
      * back5
      
      * revert to sat to cogview4 version
      
      * update a new convert from megatron
      
      * [WIP][cogview4]: implement CogView4 attention processor
      
      Add CogView4AttnProcessor class for implementing scaled dot-product attention
      with rotary embeddings for the CogVideoX model. This processor concatenates
      encoder and hidden states, applies QKV projections and RoPE, but does not
      include spatial normalization.
      
      TODO:
      - Fix incorrect QKV projection weights
      - Resolve ~25% error in RoPE implementation compared to Megatron
      
      * [cogview4] implement CogView4 transformer block
      
      Implement CogView4 transformer block following the Megatron architecture:
      - Add multi-modulate and multi-gate mechanisms for adaptive layer normalization
      - Implement dual-stream attention with encoder-decoder structure
      - Add feed-forward network with GELU activation
      - Support rotary position embeddings for image tokens
      
      The implementation follows the original CogView4 architecture while adapting
      it to work within the diffusers framework.
      
      * with new attn
      
      * [bugfix] fix dimension mismatch in CogView4 attention
      
      * [cogview4][WIP]: update final normalization in CogView4 transformer
      
      Refactored the final normalization layer in CogView4 transformer to use separate layernorm and AdaLN operations instead of combined AdaLayerNormContinuous. This matches the original implementation but needs validation.
      
      Needs verification against reference implementation.
      
      * 1
      
      * put back
      
      * Update transformer_cogview4.py
      
      * change time_shift
      
      * Update pipeline_cogview4.py
      
      * change timesteps
      
      * fix
      
      * change text_encoder_id
      
      * [cogview4][rope] align RoPE implementation with Megatron
      
      - Implement apply_rope method in attention processor to match Megatron's implementation
      - Update position embeddings to ensure compatibility with Megatron-style rotary embeddings
      - Ensure consistent rotary position encoding across attention layers
      
      This change improves compatibility with Megatron-based models and provides
      better alignment with the original implementation's positional encoding approach.
      
      * [cogview4][bugfix] apply silu activation to time embeddings in CogView4
      
      Applied silu activation to time embeddings before splitting into conditional
      and unconditional parts in CogView4Transformer2DModel. This matches the
      original implementation and helps ensure correct time conditioning behavior.
      
      * [cogview4][chore] clean up pipeline code
      
      - Remove commented out code and debug statements
      - Remove unused retrieve_timesteps function
      - Clean up code formatting and documentation
      
      This commit focuses on code cleanup in the CogView4 pipeline implementation, removing unnecessary commented code and improving readability without changing functionality.
      
      * [cogview4][scheduler] Implement CogView4 scheduler and pipeline
      
      * now It work
      
      * add timestep
      
      * batch
      
      * change convert scipt
      
      * refactor pt. 1; make style
      
      * refactor pt. 2
      
      * refactor pt. 3
      
      * add tests
      
      * make fix-copies
      
      * update toctree.yml
      
      * use flow match scheduler instead of custom
      
      * remove scheduling_cogview.py
      
      * add tiktoken to test dependencies
      
      * Update src/diffusers/models/embeddings.py
      Co-authored-by: default avatarYiYi Xu <yixu310@gmail.com>
      
      * apply suggestions from review
      
      * use diffusers apply_rotary_emb
      
      * update flow match scheduler to accept timesteps
      
      * fix comment
      
      * apply review sugestions
      
      * Update src/diffusers/schedulers/scheduling_flow_match_euler_discrete.py
      Co-authored-by: default avatarYiYi Xu <yixu310@gmail.com>
      
      ---------
      Co-authored-by: default avatar三洋三洋 <1258009915@qq.com>
      Co-authored-by: default avatarOleehyO <leehy0357@gmail.com>
      Co-authored-by: default avatarAryan <aryan@huggingface.co>
      Co-authored-by: default avatarYiYi Xu <yixu310@gmail.com>
      d90cd362
  8. 31 Jan, 2025 1 commit
  9. 24 Jan, 2025 1 commit
  10. 16 Jan, 2025 2 commits
  11. 24 Dec, 2024 1 commit
  12. 21 Dec, 2024 1 commit
    • hlky's avatar
      Support Flux IP Adapter (#10261) · be207099
      hlky authored
      
      
      * Flux IP-Adapter
      
      * test cfg
      
      * make style
      
      * temp remove copied from
      
      * fix test
      
      * fix test
      
      * v2
      
      * fix
      
      * make style
      
      * temp remove copied from
      
      * Apply suggestions from code review
      Co-authored-by: default avatarYiYi Xu <yixu310@gmail.com>
      
      * Move encoder_hid_proj to inside FluxTransformer2DModel
      
      * merge
      
      * separate encode_prompt, add copied from, image_encoder offload
      
      * make
      
      * fix test
      
      * fix
      
      * Update src/diffusers/pipelines/flux/pipeline_flux.py
      
      * test_flux_prompt_embeds change not needed
      
      * true_cfg -> true_cfg_scale
      
      * fix merge conflict
      
      * test_flux_ip_adapter_inference
      
      * add fast test
      
      * FluxIPAdapterMixin not test mixin
      
      * Update pipeline_flux.py
      Co-authored-by: default avatarYiYi Xu <yixu310@gmail.com>
      
      ---------
      Co-authored-by: default avatarYiYi Xu <yixu310@gmail.com>
      be207099
  13. 20 Dec, 2024 1 commit
  14. 17 Dec, 2024 1 commit
    • Dhruv Nair's avatar
      Fix Mochi Quality Issues (#10033) · 128b96f3
      Dhruv Nair authored
      
      
      * update
      
      * update
      
      * update
      
      * update
      
      * update
      
      * update
      
      * update
      
      * update
      
      * update
      
      * update
      
      * update
      
      * update
      
      * update
      
      * update
      
      * update
      
      * update
      
      * update
      
      * update
      
      * update
      
      * update
      
      * update
      
      * update
      
      * update
      
      * update
      
      * update
      
      * update
      
      * update
      
      * update
      
      * update
      
      * update
      
      * update
      
      * update
      
      * update
      
      * update
      
      * update
      
      * update
      
      * update
      
      * update
      
      * update
      
      * update
      
      * update
      
      * update
      
      * update
      
      * update
      
      * update
      
      * update
      
      * Update src/diffusers/models/transformers/transformer_mochi.py
      Co-authored-by: default avatarAryan <aryan@huggingface.co>
      
      ---------
      Co-authored-by: default avatarSayak Paul <spsayakpaul@gmail.com>
      Co-authored-by: default avatarAryan <aryan@huggingface.co>
      128b96f3
  15. 16 Dec, 2024 2 commits
    • Steven Liu's avatar
      [docs] Add missing AttnProcessors (#10246) · 7667cfcb
      Steven Liu authored
      * attnprocessors
      
      * lora
      
      * make style
      
      * fix
      
      * fix
      
      * sana
      
      * typo
      7667cfcb
    • Aryan's avatar
      [core] Hunyuan Video (#10136) · aace1f41
      Aryan authored
      
      
      * copy transformer
      
      * copy vae
      
      * copy pipeline
      
      * make fix-copies
      
      * refactor; make original code work with diffusers; test latents for comparison generated with this commit
      
      * move rope into pipeline; remove flash attention; refactor
      
      * begin conversion script
      
      * make style
      
      * refactor attention
      
      * refactor
      
      * refactor final layer
      
      * their mlp -> our feedforward
      
      * make style
      
      * add docs
      
      * refactor layer names
      
      * refactor modulation
      
      * cleanup
      
      * refactor norms
      
      * refactor activations
      
      * refactor single blocks attention
      
      * refactor attention processor
      
      * make style
      
      * cleanup a bit
      
      * refactor double transformer block attention
      
      * update mochi attn proc
      
      * use diffusers attention implementation in all modules; checkpoint for all values matching original
      
      * remove helper functions in vae
      
      * refactor upsample
      
      * refactor causal conv
      
      * refactor resnet
      
      * refactor
      
      * refactor
      
      * refactor
      
      * grad checkpointing
      
      * autoencoder test
      
      * fix scaling factor
      
      * refactor clip
      
      * refactor llama text encoding
      
      * add coauthor
      Co-Authored-By: default avatar"Gregory D. Hunkins" <greg@ollano.com>
      
      * refactor rope; diff: 0.14990234375; reason and fix: create rope grid on cpu and move to device
      
      Note: The following line diverges from original behaviour. We create the grid on the device, whereas
      original implementation creates it on CPU and then moves it to device. This results in numerical
      differences in layerwise debugging outputs, but visually it is the same.
      
      * use diffusers timesteps embedding; diff: 0.10205078125
      
      * rename
      
      * convert
      
      * update
      
      * add tests for transformer
      
      * add pipeline tests; text encoder 2 is not optional
      
      * fix attention implementation for torch
      
      * add example
      
      * update docs
      
      * update docs
      
      * apply suggestions from review
      
      * refactor vae
      
      * update
      
      * Apply suggestions from code review
      Co-authored-by: default avatarhlky <hlky@hlky.ac>
      
      * Update src/diffusers/pipelines/hunyuan_video/pipeline_hunyuan_video.py
      Co-authored-by: default avatarhlky <hlky@hlky.ac>
      
      * Update src/diffusers/pipelines/hunyuan_video/pipeline_hunyuan_video.py
      Co-authored-by: default avatarhlky <hlky@hlky.ac>
      
      * make fix-copies
      
      * update
      
      ---------
      Co-authored-by: default avatar"Gregory D. Hunkins" <greg@ollano.com>
      Co-authored-by: default avatarhlky <hlky@hlky.ac>
      aace1f41
  16. 15 Dec, 2024 1 commit
    • Junsong Chen's avatar
      [Sana] Add Sana, including `SanaPipeline`, `SanaPAGPipeline`,... · 5a196e3d
      Junsong Chen authored
      
      [Sana] Add Sana, including `SanaPipeline`, `SanaPAGPipeline`, `LinearAttentionProcessor`, `Flow-based DPM-sovler` and so on. (#9982)
      
      * first add a script for DC-AE;
      
      * DC-AE init
      
      * replace triton with custom implementation
      
      * 1. rename file and remove un-used codes;
      
      * no longer rely on omegaconf and dataclass
      
      * replace custom activation with diffuers activation
      
      * remove dc_ae attention in attention_processor.py
      
      * iinherit from ModelMixin
      
      * inherit from ConfigMixin
      
      * dc-ae reduce to one file
      
      * update downsample and upsample
      
      * clean code
      
      * support DecoderOutput
      
      * remove get_same_padding and val2tuple
      
      * remove autocast and some assert
      
      * update ResBlock
      
      * remove contents within super().__init__
      
      * Update src/diffusers/models/autoencoders/dc_ae.py
      Co-authored-by: default avatarYiYi Xu <yixu310@gmail.com>
      
      * remove opsequential
      
      * update other blocks to support the removal of build_norm
      
      * remove build encoder/decoder project in/out
      
      * remove inheritance of RMSNorm2d from LayerNorm
      
      * remove reset_parameters for RMSNorm2d
      Co-authored-by: default avatarYiYi Xu <yixu310@gmail.com>
      
      * remove device and dtype in RMSNorm2d __init__
      Co-authored-by: default avatarYiYi Xu <yixu310@gmail.com>
      
      * Update src/diffusers/models/autoencoders/dc_ae.py
      Co-authored-by: default avatarYiYi Xu <yixu310@gmail.com>
      
      * Update src/diffusers/models/autoencoders/dc_ae.py
      Co-authored-by: default avatarYiYi Xu <yixu310@gmail.com>
      
      * Update src/diffusers/models/autoencoders/dc_ae.py
      Co-authored-by: default avatarYiYi Xu <yixu310@gmail.com>
      
      * remove op_list & build_block
      
      * remove build_stage_main
      
      * change file name to autoencoder_dc
      
      * move LiteMLA to attention.py
      
      * align with other vae decode output;
      
      * add DC-AE into init files;
      
      * update
      
      * make quality && make style;
      
      * quick push before dgx disappears again
      
      * update
      
      * make style
      
      * update
      
      * update
      
      * fix
      
      * refactor
      
      * refactor
      
      * refactor
      
      * update
      
      * possibly change to nn.Linear
      
      * refactor
      
      * make fix-copies
      
      * replace vae with ae
      
      * replace get_block_from_block_type to get_block
      
      * replace downsample_block_type from Conv to conv for consistency
      
      * add scaling factors
      
      * incorporate changes for all checkpoints
      
      * make style
      
      * move mla to attention processor file; split qkv conv to linears
      
      * refactor
      
      * add tests
      
      * from original file loader
      
      * add docs
      
      * add standard autoencoder methods
      
      * combine attention processor
      
      * fix tests
      
      * update
      
      * minor fix
      
      * minor fix
      
      * minor fix & in/out shortcut rename
      
      * minor fix
      
      * make style
      
      * fix paper link
      
      * update docs
      
      * update single file loading
      
      * make style
      
      * remove single file loading support; todo for DN6
      
      * Apply suggestions from code review
      Co-authored-by: default avatarSteven Liu <59462357+stevhliu@users.noreply.github.com>
      
      * add abstract
      
      * 1. add DCAE into diffusers;
      2. make style and make quality;
      
      * add DCAE_HF into diffusers;
      
      * bug fixed;
      
      * add SanaPipeline, SanaTransformer2D into diffusers;
      
      * add sanaLinearAttnProcessor2_0;
      
      * first update for SanaTransformer;
      
      * first update for SanaPipeline;
      
      * first success run SanaPipeline;
      
      * model output finally match with original model with the same intput;
      
      * code update;
      
      * code update;
      
      * add a flow dpm-solver scripts
      
      * 🎉[important update]
      1. Integrate flow-dpm-sovler into diffusers;
      2. finally run successfully on both `FlowMatchEulerDiscreteScheduler` and `FlowDPMSolverMultistepScheduler`;
      
      * 🎉🔧
      
      [important update & fix huge bugs!!]
      1. add SanaPAGPipeline & several related Sana linear attention operators;
      2. `SanaTransformer2DModel` not supports multi-resolution input;
      2. fix the multi-scale HW bugs in SanaPipeline and SanaPAGPipeline;
      3. fix the flow-dpm-solver set_timestep() init `model_output` and `lower_order_nums` bugs;
      
      * remove prints;
      
      * add convert sana official checkpoint to diffusers format Safetensor.
      
      * Update src/diffusers/models/transformers/sana_transformer_2d.py
      Co-authored-by: default avatarSteven Liu <59462357+stevhliu@users.noreply.github.com>
      
      * Update src/diffusers/models/transformers/sana_transformer_2d.py
      Co-authored-by: default avatarSteven Liu <59462357+stevhliu@users.noreply.github.com>
      
      * Update src/diffusers/models/transformers/sana_transformer_2d.py
      Co-authored-by: default avatarSteven Liu <59462357+stevhliu@users.noreply.github.com>
      
      * Update src/diffusers/pipelines/pag/pipeline_pag_sana.py
      Co-authored-by: default avatarSteven Liu <59462357+stevhliu@users.noreply.github.com>
      
      * Update src/diffusers/models/transformers/sana_transformer_2d.py
      Co-authored-by: default avatarSteven Liu <59462357+stevhliu@users.noreply.github.com>
      
      * Update src/diffusers/models/transformers/sana_transformer_2d.py
      Co-authored-by: default avatarSteven Liu <59462357+stevhliu@users.noreply.github.com>
      
      * Update src/diffusers/pipelines/sana/pipeline_sana.py
      Co-authored-by: default avatarSteven Liu <59462357+stevhliu@users.noreply.github.com>
      
      * Update src/diffusers/pipelines/sana/pipeline_sana.py
      Co-authored-by: default avatarSteven Liu <59462357+stevhliu@users.noreply.github.com>
      
      * update Sana for DC-AE's recent commit;
      
      * make style && make quality
      
      * Add StableDiffusion3PAGImg2Img Pipeline + Fix SD3 Unconditional PAG (#9932)
      
      * fix progress bar updates in SD 1.5 PAG Img2Img pipeline
      
      ---------
      Co-authored-by: default avatarVinh H. Pham <phamvinh257@gmail.com>
      Co-authored-by: default avatarSayak Paul <spsayakpaul@gmail.com>
      
      * make the vae can be None in `__init__` of `SanaPipeline`
      
      * Update src/diffusers/models/transformers/sana_transformer_2d.py
      Co-authored-by: default avatarhlky <hlky@hlky.ac>
      
      * change the ae related code due to the latest update of DCAE branch;
      
      * change the ae related code due to the latest update of DCAE branch;
      
      * 1. change code based on AutoencoderDC;
      2. fix the bug of new GLUMBConv;
      3. run success;
      
      * update for solving conversation.
      
      * 1. fix bugs and run convert script success;
      2. Downloading ckpt from hub automatically;
      
      * make style && make quality;
      
      * 1. remove un-unsed parameters in init;
      2. code update;
      
      * remove test file
      
      * refactor; add docs; add tests; update conversion script
      
      * make style
      
      * make fix-copies
      
      * refactor
      
      * udpate pipelines
      
      * pag tests and refactor
      
      * remove sana pag conversion script
      
      * handle weight casting in conversion script
      
      * update conversion script
      
      * add a processor
      
      * 1. add bf16 pth file path;
      2. add complex human instruct in pipeline;
      
      * fix fast \tests
      
      * change gemma-2-2b-it ckpt to a non-gated repo;
      
      * fix the pth path bug in conversion script;
      
      * change grad ckpt to original; make style
      
      * fix the complex_human_instruct bug and typo;
      
      * remove dpmsolver flow scheduler
      
      * apply review suggestions
      
      * change the `FlowMatchEulerDiscreteScheduler` to default `DPMSolverMultistepScheduler` with flow matching scheduler.
      
      * fix the tokenizer.padding_side='right' bug;
      
      * update docs
      
      * make fix-copies
      
      * fix imports
      
      * fix docs
      
      * add integration test
      
      * update docs
      
      * update examples
      
      * fix convert_model_output in schedulers
      
      * fix failing tests
      
      ---------
      Co-authored-by: default avatarJunyu Chen <chenjydl2003@gmail.com>
      Co-authored-by: default avatarYiYi Xu <yixu310@gmail.com>
      Co-authored-by: default avatarSayak Paul <spsayakpaul@gmail.com>
      Co-authored-by: default avatarchenjy2003 <70215701+chenjy2003@users.noreply.github.com>
      Co-authored-by: default avatarAryan <aryan@huggingface.co>
      Co-authored-by: default avatarSteven Liu <59462357+stevhliu@users.noreply.github.com>
      Co-authored-by: default avatarhlky <hlky@hlky.ac>
      5a196e3d
  17. 12 Dec, 2024 2 commits
    • Aryan's avatar
      [core] LTX Video (#10021) · 96c376a5
      Aryan authored
      
      
      * transformer
      
      * make style & make fix-copies
      
      * transformer
      
      * add transformer tests
      
      * 80% vae
      
      * make style
      
      * make fix-copies
      
      * fix
      
      * undo cogvideox changes
      
      * update
      
      * update
      
      * match vae
      
      * add docs
      
      * t2v pipeline working; scheduler needs to be checked
      
      * docs
      
      * add pipeline test
      
      * update
      
      * update
      
      * make fix-copies
      
      * Apply suggestions from code review
      Co-authored-by: default avatarSteven Liu <59462357+stevhliu@users.noreply.github.com>
      
      * update
      
      * copy t2v to i2v pipeline
      
      * update
      
      * apply review suggestions
      
      * update
      
      * make style
      
      * remove framewise encoding/decoding
      
      * pack/unpack latents
      
      * image2video
      
      * update
      
      * make fix-copies
      
      * update
      
      * update
      
      * rope scale fix
      
      * debug layerwise code
      
      * remove debug
      
      * Apply suggestions from code review
      Co-authored-by: default avatarYiYi Xu <yixu310@gmail.com>
      
      * propagate precision changes to i2v pipeline
      
      * remove downcast
      
      * address review comments
      
      * fix comment
      
      * address review comments
      
      * [Single File] LTX support for loading original weights (#10135)
      
      * from original file mixin for ltx
      
      * undo config mapping fn changes
      
      * update
      
      * add single file to pipelines
      
      * update docs
      
      * Update src/diffusers/models/autoencoders/autoencoder_kl_ltx.py
      
      * Update src/diffusers/models/autoencoders/autoencoder_kl_ltx.py
      
      * rename classes based on ltx review
      
      * point to original repository for inference
      
      * make style
      
      * resolve conflicts correctly
      
      ---------
      Co-authored-by: default avatarSteven Liu <59462357+stevhliu@users.noreply.github.com>
      Co-authored-by: default avatarYiYi Xu <yixu310@gmail.com>
      96c376a5
    • Canva's avatar
      Add support for XFormers in SD3 (#8583) · 7db9463e
      Canva authored
      
      
      * Add support for XFormers in SD3
      
      * sd3 xformers test
      
      * sd3 xformers quality
      
      * sd3 xformers update
      
      ---------
      Co-authored-by: default avatarSayak Paul <spsayakpaul@gmail.com>
      Co-authored-by: default avatarYiYi Xu <yixu310@gmail.com>
      7db9463e
  18. 06 Dec, 2024 2 commits
  19. 05 Dec, 2024 1 commit
  20. 03 Dec, 2024 1 commit
  21. 18 Nov, 2024 1 commit
  22. 09 Nov, 2024 1 commit
  23. 05 Nov, 2024 1 commit
    • Aryan's avatar
      [core] Mochi T2V (#9769) · 3f329a42
      Aryan authored
      
      
      * update
      
      * udpate
      
      * update transformer
      
      * make style
      
      * fix
      
      * add conversion script
      
      * update
      
      * fix
      
      * update
      
      * fix
      
      * update
      
      * fixes
      
      * make style
      
      * update
      
      * update
      
      * update
      
      * init
      
      * update
      
      * update
      
      * add
      
      * up
      
      * up
      
      * up
      
      * update
      
      * mochi transformer
      
      * remove original implementation
      
      * make style
      
      * update inits
      
      * update conversion script
      
      * docs
      
      * Update src/diffusers/pipelines/mochi/pipeline_mochi.py
      Co-authored-by: default avatarDhruv Nair <dhruv.nair@gmail.com>
      
      * Update src/diffusers/pipelines/mochi/pipeline_mochi.py
      Co-authored-by: default avatarDhruv Nair <dhruv.nair@gmail.com>
      
      * fix docs
      
      * pipeline fixes
      
      * make style
      
      * invert sigmas in scheduler; fix pipeline
      
      * fix pipeline num_frames
      
      * flip proj and gate in swiglu
      
      * make style
      
      * fix
      
      * make style
      
      * fix tests
      
      * latent mean and std fix
      
      * update
      
      * cherry-pick 1069d210e1b9e84a366cdc7a13965626ea258178
      
      * remove additional sigma already handled by flow match scheduler
      
      * fix
      
      * remove hardcoded value
      
      * replace conv1x1 with linear
      
      * Update src/diffusers/pipelines/mochi/pipeline_mochi.py
      Co-authored-by: default avatarDhruv Nair <dhruv.nair@gmail.com>
      
      * framewise decoding and conv_cache
      
      * make style
      
      * Apply suggestions from code review
      
      * mochi vae encoder changes
      
      * rebase correctly
      
      * Update scripts/convert_mochi_to_diffusers.py
      
      * fix tests
      
      * fixes
      
      * make style
      
      * update
      
      * make style
      
      * update
      
      * add framewise and tiled encoding
      
      * make style
      
      * make original vae implementation behaviour the default; note: framewise encoding does not work
      
      * remove framewise encoding implementation due to presence of attn layers
      
      * fight test 1
      
      * fight test 2
      
      ---------
      Co-authored-by: default avatarDhruv Nair <dhruv.nair@gmail.com>
      Co-authored-by: default avataryiyixuxu <yixu310@gmail.com>
      3f329a42
  24. 01 Nov, 2024 1 commit
    • Leo Jiang's avatar
      NPU Adaption for FLUX (#9751) · 9dcac830
      Leo Jiang authored
      
      
      * NPU implementation for FLUX
      
      * NPU implementation for FLUX
      
      * NPU implementation for FLUX
      
      * NPU implementation for FLUX
      
      * NPU implementation for FLUX
      
      * NPU implementation for FLUX
      
      * NPU implementation for FLUX
      
      * NPU implementation for FLUX
      
      * NPU implementation for FLUX
      
      * NPU implementation for FLUX
      
      * NPU implementation for FLUX
      
      * NPU implementation for FLUX
      
      * NPU implementation for FLUX
      
      * NPU implementation for FLUX
      
      ---------
      Co-authored-by: default avatar蒋硕 <jiangshuo9@h-partners.com>
      9dcac830
  25. 29 Oct, 2024 1 commit
  26. 21 Oct, 2024 1 commit
  27. 14 Oct, 2024 1 commit
    • Yuxuan.Zhang's avatar
      CogView3Plus DiT (#9570) · 8d81564b
      Yuxuan.Zhang authored
      * merge 9588
      
      * max_shard_size="5GB" for colab running
      
      * conversion script updates; modeling test; refactor transformer
      
      * make fix-copies
      
      * Update convert_cogview3_to_diffusers.py
      
      * initial pipeline draft
      
      * make style
      
      * fight bugs 🐛
      
      🪳
      
      * add example
      
      * add tests; refactor
      
      * make style
      
      * make fix-copies
      
      * add co-author
      
      YiYi Xu <yixu310@gmail.com>
      
      * remove files
      
      * add docs
      
      * add co-author
      Co-Authored-By: default avatarYiYi Xu <yixu310@gmail.com>
      
      * fight docs
      
      * address reviews
      
      * make style
      
      * make model work
      
      * remove qkv fusion
      
      * remove qkv fusion tets
      
      * address review comments
      
      * fix make fix-copies error
      
      * remove None and TODO
      
      * for FP16(draft)
      
      * make style
      
      * remove dynamic cfg
      
      * remove pooled_projection_dim as a parameter
      
      * fix tests
      
      ---------
      Co-authored-by: default avatarAryan <aryan@huggingface.co>
      Co-authored-by: default avatarYiYi Xu <yixu310@gmail.com>
      8d81564b
  28. 23 Aug, 2024 2 commits
  29. 21 Aug, 2024 1 commit
  30. 06 Aug, 2024 2 commits
  31. 05 Aug, 2024 1 commit
    • Aryan's avatar
      PAG variant for HunyuanDiT, PAG refactor (#8936) · b7058d14
      Aryan authored
      
      
      * copy hunyuandit pipeline
      
      * pag variant of hunyuan dit
      
      * add tests
      
      * update docs
      
      * make style
      
      * make fix-copies
      
      * Update src/diffusers/pipelines/pag/pag_utils.py
      
      * remove incorrect copied from
      
      * remove pag hunyuan attn procs to resolve conflicts
      
      * add pag attn procs again
      
      * new implementation for pag_utils
      
      * revert pag changes
      
      * add pag refactor back; update pixart sigma
      
      * update pixart pag tests
      
      * apply suggestions from review
      
      Co-Authored-By: yixu310@gmail.com
      
      * make style
      
      * update docs, fix tests
      
      * fix tests
      
      * fix test_components_function since list not accepted as valid __init__ param
      
      * apply patch to fix broken tests
      Co-Authored-By: default avatarSayak Paul <spsayakpaul@gmail.com>
      
      * make style
      
      * fix hunyuan tests
      
      ---------
      Co-authored-by: default avatarSayak Paul <spsayakpaul@gmail.com>
      b7058d14
  32. 04 Aug, 2024 2 commits