- 28 Aug, 2025 1 commit
-
-
Dhruv Nair authored
* update * update * update * update * update * merge main * Revert "merge main" This reverts commit 65efbcead58644b31596ed2d714f7cee0e0238d3.
-
- 19 Jun, 2025 1 commit
-
-
Aryan authored
update
-
- 15 Feb, 2025 1 commit
-
-
Yuxuan Zhang authored
* init * encode with glm * draft schedule * feat(scheduler): Add CogView scheduler implementation * feat(embeddings): add CogView 2D rotary positional embedding * 1 * Update pipeline_cogview4.py * fix the timestep init and sigma * update latent * draft patch(not work) * fix * [WIP][cogview4]: implement initial CogView4 pipeline Implement the basic CogView4 pipeline structure with the following changes: - Add CogView4 pipeline implementation - Implement DDIM scheduler for CogView4 - Add CogView3Plus transformer architecture - Update embedding models Current limitations: - CFG implementation uses padding for sequence length alignment - Need to verify transformer inference alignment with Megatron TODO: - Consider separate forward passes for condition/uncondition instead of padding approach * [WIP][cogview4][refactor]: Split condition/uncondition forward pass in CogView4 pipeline Split the forward pass for conditional and unconditional predictions in the CogView4 pipeline to match the original implementation. The noise prediction is now done separately for each case before combining them for guidance. However, the results still need improvement. This is a work in progress as the generated images are not yet matching expected quality. * use with -2 hidden state * remove text_projector * 1 * [WIP] Add tensor-reload to align input from transformer block * [WIP] for older glm * use with cogview4 transformers forward twice of u and uc * Update convert_cogview4_to_diffusers.py * remove this * use main example * change back * reset * setback * back * back 4 * Fix qkv conversion logic for CogView4 to Diffusers format * back5 * revert to sat to cogview4 version * update a new convert from megatron * [WIP][cogview4]: implement CogView4 attention processor Add CogView4AttnProcessor class for implementing scaled dot-product attention with rotary embeddings for the CogVideoX model. This processor concatenates encoder and hidden states, applies QKV projections and RoPE, but does not include spatial normalization. TODO: - Fix incorrect QKV projection weights - Resolve ~25% error in RoPE implementation compared to Megatron * [cogview4] implement CogView4 transformer block Implement CogView4 transformer block following the Megatron architecture: - Add multi-modulate and multi-gate mechanisms for adaptive layer normalization - Implement dual-stream attention with encoder-decoder structure - Add feed-forward network with GELU activation - Support rotary position embeddings for image tokens The implementation follows the original CogView4 architecture while adapting it to work within the diffusers framework. * with new attn * [bugfix] fix dimension mismatch in CogView4 attention * [cogview4][WIP]: update final normalization in CogView4 transformer Refactored the final normalization layer in CogView4 transformer to use separate layernorm and AdaLN operations instead of combined AdaLayerNormContinuous. This matches the original implementation but needs validation. Needs verification against reference implementation. * 1 * put back * Update transformer_cogview4.py * change time_shift * Update pipeline_cogview4.py * change timesteps * fix * change text_encoder_id * [cogview4][rope] align RoPE implementation with Megatron - Implement apply_rope method in attention processor to match Megatron's implementation - Update position embeddings to ensure compatibility with Megatron-style rotary embeddings - Ensure consistent rotary position encoding across attention layers This change improves compatibility with Megatron-based models and provides better alignment with the original implementation's positional encoding approach. * [cogview4][bugfix] apply silu activation to time embeddings in CogView4 Applied silu activation to time embeddings before splitting into conditional and unconditional parts in CogView4Transformer2DModel. This matches the original implementation and helps ensure correct time conditioning behavior. * [cogview4][chore] clean up pipeline code - Remove commented out code and debug statements - Remove unused retrieve_timesteps function - Clean up code formatting and documentation This commit focuses on code cleanup in the CogView4 pipeline implementation, removing unnecessary commented code and improving readability without changing functionality. * [cogview4][scheduler] Implement CogView4 scheduler and pipeline * now It work * add timestep * batch * change convert scipt * refactor pt. 1; make style * refactor pt. 2 * refactor pt. 3 * add tests * make fix-copies * update toctree.yml * use flow match scheduler instead of custom * remove scheduling_cogview.py * add tiktoken to test dependencies * Update src/diffusers/models/embeddings.py Co-authored-by:
YiYi Xu <yixu310@gmail.com> * apply suggestions from review * use diffusers apply_rotary_emb * update flow match scheduler to accept timesteps * fix comment * apply review sugestions * Update src/diffusers/schedulers/scheduling_flow_match_euler_discrete.py Co-authored-by:
YiYi Xu <yixu310@gmail.com> --------- Co-authored-by:
三洋三洋 <1258009915@qq.com> Co-authored-by:
OleehyO <leehy0357@gmail.com> Co-authored-by:
Aryan <aryan@huggingface.co> Co-authored-by:
YiYi Xu <yixu310@gmail.com>
-
- 14 Feb, 2025 1 commit
-
-
Aryan authored
* update * fix * non_blocking; handle parameters and buffers * update * Group offloading with cuda stream prefetching (#10516) * cuda stream prefetch * remove breakpoints * update * copy model hook implementation from pab * update; ~very workaround based implementation but it seems to work as expected; needs cleanup and rewrite * more workarounds to make it actually work * cleanup * rewrite * update * make sure to sync current stream before overwriting with pinned params not doing so will lead to erroneous computations on the GPU and cause bad results * better check * update * remove hook implementation to not deal with merge conflict * re-add hook changes * why use more memory when less memory do trick * why still use slightly more memory when less memory do trick * optimise * add model tests * add pipeline tests * update docs * add layernorm and groupnorm * address review comments * improve tests; add docs * improve docs * Apply suggestions from code review Co-authored-by:
Steven Liu <59462357+stevhliu@users.noreply.github.com> * apply suggestions from code review * update tests * apply suggestions from review * enable_group_offloading -> enable_group_offload for naming consistency * raise errors if multiple offloading strategies used; add relevant tests * handle .to() when group offload applied * refactor some repeated code * remove unintentional change from merge conflict * handle .cuda() --------- Co-authored-by:
Steven Liu <59462357+stevhliu@users.noreply.github.com>
-
- 22 Jan, 2025 1 commit
-
-
Aryan authored
* update * update * make style * remove dynamo disable * add coauthor Co-Authored-By:
Dhruv Nair <dhruv.nair@gmail.com> * update * update * update * update mixin * add some basic tests * update * update * non_blocking * improvements * update * norm.* -> norm * apply suggestions from review * add example * update hook implementation to the latest changes from pyramid attention broadcast * deinitialize should raise an error * update doc page * Apply suggestions from code review Co-authored-by:
Steven Liu <59462357+stevhliu@users.noreply.github.com> * update docs * update * refactor * fix _always_upcast_modules for asym ae and vq_model * fix lumina embedding forward to not depend on weight dtype * refactor tests * add simple lora inference tests * _always_upcast_modules -> _precision_sensitive_module_patterns * remove todo comments about review; revert changes to self.dtype in unets because .dtype on ModelMixin should be able to handle fp8 weight case * check layer dtypes in lora test * fix UNet1DModelTests::test_layerwise_upcasting_inference * _precision_sensitive_module_patterns -> _skip_layerwise_casting_patterns based on feedback * skip test in NCSNppModelTests * skip tests for AutoencoderTinyTests * skip tests for AutoencoderOobleckTests * skip tests for UNet1DModelTests - unsupported pytorch operations * layerwise_upcasting -> layerwise_casting * skip tests for UNetRLModelTests; needs next pytorch release for currently unimplemented operation support * add layerwise fp8 pipeline test * use xfail * Apply suggestions from code review Co-authored-by:
Dhruv Nair <dhruv.nair@gmail.com> * add assertion with fp32 comparison; add tolerance to fp8-fp32 vs fp32-fp32 comparison (required for a few models' test to pass) * add note about memory consumption on tesla CI runner for failing test --------- Co-authored-by:
Dhruv Nair <dhruv.nair@gmail.com> Co-authored-by:
Steven Liu <59462357+stevhliu@users.noreply.github.com>
-
- 21 Jan, 2025 1 commit
-
-
Fanli Lin authored
* initial comit * fix empty cache * fix one more * fix style * update device functions * update * update * Update src/diffusers/utils/testing_utils.py Co-authored-by:
hlky <hlky@hlky.ac> * Update src/diffusers/utils/testing_utils.py Co-authored-by:
hlky <hlky@hlky.ac> * Update src/diffusers/utils/testing_utils.py Co-authored-by:
hlky <hlky@hlky.ac> * Update tests/pipelines/controlnet/test_controlnet.py Co-authored-by:
hlky <hlky@hlky.ac> * Update src/diffusers/utils/testing_utils.py Co-authored-by:
hlky <hlky@hlky.ac> * Update src/diffusers/utils/testing_utils.py Co-authored-by:
hlky <hlky@hlky.ac> * Update tests/pipelines/controlnet/test_controlnet.py Co-authored-by:
hlky <hlky@hlky.ac> * with gc.collect * update * make style * check_torch_dependencies * add mps empty cache * bug fix * Apply suggestions from code review --------- Co-authored-by:
hlky <hlky@hlky.ac>
-
- 14 Oct, 2024 1 commit
-
-
Yuxuan.Zhang authored
* merge 9588 * max_shard_size="5GB" for colab running * conversion script updates; modeling test; refactor transformer * make fix-copies * Update convert_cogview3_to_diffusers.py * initial pipeline draft * make style * fight bugs
🐛 🪳 * add example * add tests; refactor * make style * make fix-copies * add co-author YiYi Xu <yixu310@gmail.com> * remove files * add docs * add co-author Co-Authored-By:YiYi Xu <yixu310@gmail.com> * fight docs * address reviews * make style * make model work * remove qkv fusion * remove qkv fusion tets * address review comments * fix make fix-copies error * remove None and TODO * for FP16(draft) * make style * remove dynamic cfg * remove pooled_projection_dim as a parameter * fix tests --------- Co-authored-by:
Aryan <aryan@huggingface.co> Co-authored-by:
YiYi Xu <yixu310@gmail.com>
-
- 17 Sep, 2024 1 commit
-
-
Aryan authored
* remove mentions from single file * update tests * update
-
- 06 Sep, 2024 1 commit
-
-
Dhruv Nair authored
update
-
- 23 Aug, 2024 1 commit
-
-
zR authored
* draft of embedding --------- Co-authored-by:Aryan <aryan@huggingface.co>
-
- 22 Aug, 2024 1 commit
-
-
Aryan authored
* fix xformers tests * remove unnecessary modifications to cogvideox tests * update
-
- 13 Aug, 2024 1 commit
-
-
Aryan authored
* refactor context parallel cache; update torch compile time benchmark * add tiling support * make style * remove num_frames % 8 == 0 requirement * update default num_frames to original value * add explanations + refactor * update torch compile example * update docs * update * clean up if-statements * address review comments * add test for vae tiling * update docs * update docs * update docstrings * add modeling test for cogvideox transformer * make style
-
- 07 Aug, 2024 1 commit
-
-
zR authored
* add CogVideoX --------- Co-authored-by:
Aryan <aryan@huggingface.co> Co-authored-by:
sayakpaul <spsayakpaul@gmail.com> Co-authored-by:
Aryan <contact.aryanvs@gmail.com> Co-authored-by:
yiyixuxu <yixu310@gmail.com> Co-authored-by:
Steven Liu <59462357+stevhliu@users.noreply.github.com>
-
- 11 Jul, 2024 1 commit
-
-
Xin Ma authored
* add Latte to diffusers * remove print * remove print * remove print * remove unuse codes * remove layer_norm_latte and add a flag * remove layer_norm_latte and add a flag * update latte_pipeline * update latte_pipeline * remove unuse squeeze * add norm_hidden_states.ndim == 2: # for Latte * fixed test latte pipeline bugs * fixed test latte pipeline bugs * delete sh * add doc for latte * add licensing * Move Transformer3DModelOutput to modeling_outputs * give a default value to sample_size * remove the einops dependency * change norm2 for latte * modify pipeline of latte * update test for Latte * modify some codes for latte * modify for Latte pipeline * modify for Latte pipeline * modify for Latte pipeline * modify for Latte pipeline * modify for Latte pipeline * modify for Latte pipeline * modify for Latte pipeline * modify for Latte pipeline * modify for Latte pipeline * modify for Latte pipeline * modify for Latte pipeline * modify for Latte pipeline * modify for Latte pipeline * modify for Latte pipeline * modify for Latte pipeline * modify for Latte pipeline * modify for Latte pipeline * modify for Latte pipeline * modify for Latte pipeline * modify for Latte pipeline * modify for Latte pipeline * modify for Latte pipeline * modify for Latte pipeline * modify for Latte pipeline * modify for Latte pipeline * modify for Latte pipeline * modify for Latte pipeline * video_length -> num_frames; update prepare_latents copied from * make fix-copies * make style * typo: videe -> video * update * modify for Latte pipeline * modify latte pipeline * modify latte pipeline * modify latte pipeline * modify latte pipeline * modify for Latte pipeline * Delete .vscode directory * make style * make fix-copies * add latte transformer 3d to docs _toctree.yml * update example * reduce frames for test * fixed bug of _text_preprocessing * set num frame to 1 for testing * remove unuse print * add text = self._clean_caption(text) again --------- Co-authored-by:
Sayak Paul <spsayakpaul@gmail.com> Co-authored-by:
YiYi Xu <yixu310@gmail.com> Co-authored-by:
Aryan <contact.aryanvs@gmail.com> Co-authored-by:
Aryan <aryan@huggingface.co>
-