- 29 Jul, 2025 1 commit
-
-
Aryan authored
* update * try test fix * add missing link * fix tests * Update src/diffusers/hooks/first_block_cache.py * make style
-
- 19 Jun, 2025 1 commit
-
-
Aryan authored
update
-
- 30 May, 2025 1 commit
-
-
co63oc authored
* Fix typos in strings and comments Signed-off-by:
co63oc <co63oc@users.noreply.github.com> * Update src/diffusers/hooks/hooks.py Co-authored-by:
Aryan <contact.aryanvs@gmail.com> * Update src/diffusers/hooks/hooks.py Co-authored-by:
Aryan <contact.aryanvs@gmail.com> * Update layerwise_casting.py * Apply style fixes * update --------- Signed-off-by:
co63oc <co63oc@users.noreply.github.com> Co-authored-by:
Aryan <contact.aryanvs@gmail.com> Co-authored-by:
github-actions[bot] <github-actions[bot]@users.noreply.github.com>
-
- 01 May, 2025 1 commit
-
-
co63oc authored
* Fix typos in docs and comments * Apply style fixes --------- Co-authored-by:
Sayak Paul <spsayakpaul@gmail.com> Co-authored-by:
github-actions[bot] <github-actions[bot]@users.noreply.github.com>
-
- 13 Feb, 2025 1 commit
-
-
Aryan authored
* disable peft input autocast * use new peft method name; only disable peft input autocast if submodule layerwise casting active * add test; reference PeftInputAutocastDisableHook in peft docs * add load_lora_weights test * casted -> cast * Update tests/lora/utils.py
-
- 22 Jan, 2025 1 commit
-
-
Aryan authored
* update * update * make style * remove dynamo disable * add coauthor Co-Authored-By:
Dhruv Nair <dhruv.nair@gmail.com> * update * update * update * update mixin * add some basic tests * update * update * non_blocking * improvements * update * norm.* -> norm * apply suggestions from review * add example * update hook implementation to the latest changes from pyramid attention broadcast * deinitialize should raise an error * update doc page * Apply suggestions from code review Co-authored-by:
Steven Liu <59462357+stevhliu@users.noreply.github.com> * update docs * update * refactor * fix _always_upcast_modules for asym ae and vq_model * fix lumina embedding forward to not depend on weight dtype * refactor tests * add simple lora inference tests * _always_upcast_modules -> _precision_sensitive_module_patterns * remove todo comments about review; revert changes to self.dtype in unets because .dtype on ModelMixin should be able to handle fp8 weight case * check layer dtypes in lora test * fix UNet1DModelTests::test_layerwise_upcasting_inference * _precision_sensitive_module_patterns -> _skip_layerwise_casting_patterns based on feedback * skip test in NCSNppModelTests * skip tests for AutoencoderTinyTests * skip tests for AutoencoderOobleckTests * skip tests for UNet1DModelTests - unsupported pytorch operations * layerwise_upcasting -> layerwise_casting * skip tests for UNetRLModelTests; needs next pytorch release for currently unimplemented operation support * add layerwise fp8 pipeline test * use xfail * Apply suggestions from code review Co-authored-by:
Dhruv Nair <dhruv.nair@gmail.com> * add assertion with fp32 comparison; add tolerance to fp8-fp32 vs fp32-fp32 comparison (required for a few models' test to pass) * add note about memory consumption on tesla CI runner for failing test --------- Co-authored-by:
Dhruv Nair <dhruv.nair@gmail.com> Co-authored-by:
Steven Liu <59462357+stevhliu@users.noreply.github.com>
-